Economic Intelligence & Semantic Galaxies

Given the number and verbosity of alternative definitions pertaining to enterprise and systems architectures, common sense would suggest circumspection if not agnosticism. Instead, fierce wars are endlessly waged for semantic positions built on sand hills bound to crumble under the feet of whoever tries to stand defending them.

Nature & Nurture (Wang Xingwei)

Such doomed attempts appear to be driven by a delusion seeing concepts as frozen celestial bodies; fortunately, simple-minded catalogs of unyielding definitions are progressively pushed aside by the will to understand (and milk) the new complexity of business environments.

Business Intelligence: Mapping Semantics to Circumstances

As long as information systems could be kept behind Chinese walls semantic autarky was of limited consequences. But with enterprises’ gates collapsing under digital flows, competitive edges increasingly depend on open and creative business intelligence (BI), in particular:

  • Data understanding: giving form and semantics to massive and continuous inflows of raw observations.
  • Business understanding: aligning data understanding with business objectives and processes.
  • Modeling: consolidating data and business understandings into descriptive, predictive, or operational models.
  • Evaluation: assessing and improving accuracy and effectiveness of understandings with regard to business and decision-making processes.
BI: Mapping Semantics to Circumstances

Since BI has to take into account the continuity of enterprise’s objectives and assets, the challenge is to dynamically adjust the semantics of external (business environments) and internal (objects and processes) descriptions. That could be explained in terms of gravitational semantics.

Semantic Galaxies

Assuming concepts are understood as stars wheeling across unbounded and expanding galaxies, semantics could be defined by gravitational forces and proximity between:

  • Intensional concepts (stars) bearing necessary meaning set independently of context or purpose.
  • Extensional concepts (planets) orbiting intensional ones. While their semantics is aligned with a single intensional concept, they bear enough of their gravity to create a semantic environment.

On that account semantic domains would be associated to stars and their planets, with galaxies regrouping stars (concepts) and systems (domains) bound by gravitational forces (semantics).

Galax_00
Conceptual Stars & Planets

Semantic Dimensions & the Morphing of Concepts

While systems don’t leave much, if any, room for semantic wanderings, human languages are as good as they can be pliant, plastic, and versatile. Hence the need for business intelligence to span the stretch between open and fuzzy human semantics and systems straight-jacketed modeling languages.

That can be done by framing the morphing of concepts along Zachman’s architecture description: intensional concepts being detached of specific contexts and concerns are best understood as semantic roots able to breed multi-faceted extensions, to be eventually coerced into system specifications.

Galax_Dims
Framing concepts metamorphosis along Zachman’s architecture dimensions

Managing The Alignment of Planets

As stars, concepts can be apprehended through a mix of reason and perception:

  • Figured out from a conceptual void waiting to be filled.
  • Fortuitously discovered in the course of an argument.

The benefit in both cases would be to delay verbal definitions and so to avoid preempted or biased understandings: as for the Schrödinger’s cat, trying to lock up meanings with bare words often breaks their semantic integrity, shattering scraps in every direction.

In contrast, semantic orbits and alignments open the door to the dynamic management of overlapping definitions across conceptual galaxies. As it happens, that new paradigm could be a game changer for enterprise architecture and knowledge management.

From Business To Economic Intelligence

Traditional approaches to information systems and knowledge management are made obsolete by the combination of digital environments, big data, and the spreading of artificial brains with deep learning abilities.

To cope with these changes enterprises have to better integrate business intelligence with information systems, and that cannot be achieved without redefining the semantic and functional dimensions of enterprise architectures.

Semantic dimensions deal with contexts and domains of concerns: statutory, business, organization, engineering. Since these dimensions are by nature different, their alignment has to be managed; that can be achieved with conceptual galaxies and profiled ontologies.

Functional dimensions are to form the backbone of enterprise architectures, their primary purpose being the integration of data analytics, information processing, and decision-making. That approach, often labelled as economic intelligence, defines data, information, and knowledge, respectively as resources, assets, and service:

  1. Resources: data is captured through continuous and heterogeneous flows from a wide range of sources.
  2. Assets: information is built by adding identity, structure, and semantics to data.
  3. Services: knowledge is information put to use through decision-making.
CaKe_DataInfoKnow
Economic Intelligence: Bringing data mining, information processing, and knowledge management into a single conceptual framework

An ontological kernel has been developed as a Proof of Concept using Protégé/OWL 2; a beta version is available for comments on the Stanford/Protégé portal with the link: Caminao Ontological Kernel (CaKe).

Examples

Data

Wikipedia: Any sequence of one or more symbols given meaning by specific act(s) of interpretation; requires interpretation to become information.

Merriam-Webster: Factual information such as measurements or statistics; information in digital form that can be transmitted or processed; information and noise from a sensing device or organ that must be processed to be meaningful.

Cambridge Dictionary: Information, especially facts or numbers; information in an electronic form that can be stored and used by a computer.

Collins: Information that can be stored and used by a computer program.

TOGAF: Basic unit of information having a meaning and that may have subcategories (data items) of distinct units and values.

Galax_DataInfo

System

Wikipedia: A regularly interacting or interdependent group of items forming a unified whole; Every system is delineated by its spatial and temporal boundaries, surrounded and influenced by its environment, described by its structure and purpose and expressed in its functioning.

Merriam-Webster: A regularly interacting or interdependent group of items forming a unified whole

Business Dictionary: A set of detailed methods, procedures and routines created to carry out a specific activity, perform a duty, or solve a problem; organized, purposeful structure that consists of interrelated and interdependent elements.

Cambridge Dictionary: A set of connected things or devices that operate together

Collins Dictionary: A way of working, organizing, or doing something which follows a fixed plan or set of rules; a set of things / rules.

TOGAF: A collection of components organized to accomplish a specific function or set of functions (from ISO/IEC 42010:2007).

Further Reading

External Links

Healthcare: Tracks & Stakes

Preamble

Healthcare represents at least a tenth of developed country’s GDP, with demography pushing to higher levels year after year. In principle technology could drive costs in both directions; in practice it has worked like a ratchet: upside, innovations are extending the scope of expensive treatments, downside, institutional and regulatory constraints have hamstrung the necessary mutations of organizations and processes.

Health Care Personal Assistant (Kerry James Marshall)

As a result, attempts to spread technology benefits across healthcare activities have dwindle or melt away, even when buttressed by major players like Google or Microsoft.

But built up pressures on budgets combined with social transformations have undermined bureaucratic barriers and incumbents’ estates, springing up initiatives from all corners: pharmaceutical giants, technology startups, healthcare providers, insurers, and of course major IT companies.

Yet the wide range of players’ fields and starting lines may be misleading, incumbents or newcomers are well aware of what the race is about: whatever the number of initial track lanes, they are to fade away after a few laps, spurring the front-runners to cover the whole track, alone or through partnerships. As a consequence, winning strategies would have to be supported by a comprehensive and coherent understanding of all healthcare aspects and issues, which can be best achieved with ontologies.

Ontologies vs Models

Ontologies are symbolic constructs (epitomized by conceptual graphs made of nodes and connectors) whose purpose is to make sense of a domain of discourse:

  1. Ontologies are made of categories of things, beings, or phenomena; as such they may range from simple catalogs to philosophical doctrines.
  2. Ontologies are driven by cognitive (i.e non empirical) purposes, namely the validity and consistency of symbolic representations.
  3. Ontologies are meant to be directed at specific domains of concerns, whatever they can be: politics, religion, business, astrology, etc.

That makes ontologies a special case of uncommitted models: like models they are set on contexts and concerns; but contrary to models ontologies’ concerns are detached from actual purposes. That is precisely what is expected from a healthcare conceptual framework.

Contexts & Business Domains

Healthcare issues are set across too many domains to be effectively fathomed, not to mention followed as they change. Notwithstanding, global players must anchor their strategies to different institutional contexts, and frame their policies as to make them transparent and attractive to others players. Such all-inclusive frameworks could be built from ontologies profiled with regard to the governance and stability of contexts:

  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to accord.
  • Corporate: Defined by enterprises, changes subject to internal decision-making.
  • Social: Defined by usage, volatile, continuous and informal changes.
  • Personal: Customary, defined by named individuals (e.g research paper).

Ontologies set along that taxonomy of contexts could then be refined as to target enterprise architecture layers: enterprise, systems, platforms, e.g:

A sample of Healthcare profiled ontologies

Depending on the scope and nature of partnerships, ontologies could be further detailed as to encompass architectures capabilities: Who, What, How, Where, When. 

Concerns & Architectures Capabilities

As pointed above, a key success factor for major players would be their ability to federate initiatives and undertakings of both incumbents and newcomers, within or without partnerships. That can be best achieved with enterprise architectures aligned with an all-inclusive yet open framework, and for that purpose the Zachman taxonomy would be the option of choice. The corresponding enterprise architecture capabilities (Who,What, How, Where, When) could then be uniformly applied to contexts and concerns:

  • Internally across architecture layers for enterprise (business and organization), systems (logical structures and functionalities), and platforms (technologies).
  • Externally across context-based ontologies as proposed above.

The nexus between environments (contexts) and enterprises (concerns) ontologies could then be organised according to the epistemic nature of items: terms, documents, symbolic representations (aka surrogates), or business objects and phenomena.

Mapping knowledge to architectures capabilities

That would outline four basic ontological archetypes that may or may not be combined:

  • Thesaurus: ontologies covering terms, concepts.
  • Document Management: thesaurus and documents.
  • Organization and Business: ontologies pertaining to enterprise organization and business processes.
  • Engineering: ontologies pertaining to the symbolic representation (aka surrogates) of organizations, businesses, and systems.

Global healthcare players could then build federating frameworks by combining domain and architecture driven ontologies, e.g:

Building federating frameworks with modular ontologies designed on purpose.

As a concluding remark, it must be reminded that the objective is to federate the activities and systems of healthcare players without interfering with the design of their business processes or supporting systems. Hence the importance of the distinction between ontologies and models introduced above which would act as a guaranty that concerns are not mixed up insofar as ontologies remain uncommitted models.

Further Reading

External Links

Ontologies as Productive Assets

Preamble

An often overlooked benefit of artificial intelligence has been a renewed interest in seminal philosophical and cognitive topics; ontologies coming top of the list.

The Thinker Monkey, Breviary of Mary of Savoy
The Thinker Monkey, Breviary of Mary of Savoy

Yet that interest has often been led astray by misguided perspectives, in particular:

  • Universality: one-fits-all approaches are pointless if not self-defeating considering that ontologies are meant to target specific domains of concerns.
  • Implementation: the focus is usually put on representation schemes (commonly known as Resource Description Frameworks, or RDFs), instead of the nature of targeted knowledge and the associated cognitive capabilities.

Those misconceptions, often combined, may explain the limited practical inroads of ontologies. Conversely, they also point to ontologies’ wherewithal for enterprises immersed into boundless and fluctuating knowledge-driven business environments.

Ontologies as Assets

Whatever the name of the matter (data, information or knowledge), there isn’t much argument about its primacy for business competitiveness; insofar as enterprises are concerned knowledge is recognized as a key asset, as valuable if not more than financial ones, and should be managed accordingly. Pushing the comparison still further, data would be likened to liquidity, information to fixed income investment, and knowledge to capital ventures. To summarize, assets whatever their nature lose value when left asleep and bear fruits when kept awake; that’s doubly the case for data and information:

  • Digitized business flows accelerates data obsolescence and makes it continuous.
  • Shifting and porous enterprises boundaries and markets segments call for constant updates and adjustments of enterprise information models.

But assessing the business value of knowledge has always been a matter of intuition rather than accounting, even when it can be patented; and most of knowledge shapes up well beyond regulatory reach. Nonetheless, knowledge is not manna from heaven but the outcome of information processing, so assessing the capabilities of such processes could help.

Admittedly, traditional modeling methods are too stringent for that purpose, and looser schemes are needed to accommodate the open range of business contexts and concerns; as already expounded, that’s precisely what ontologies are meant to do, e.g:

  • Systems modeling,  with a focus on integration, e.g Zachman Framework.
  • Classifications, with a focus on range, e.g Dewey Decimal System.
  • Conceptual models, with a focus on understanding, e.g legislation.
  • Knowledge management, with a focus on reasoning, e.g semantic web.

And ontologies can do more than bringing under a single roof the whole of enterprise knowledge representations: they can also be used to nurture and crossbreed symbolic assets and develop innovative ones.

Ontologies Benefits

Knowledge is best understood as information put to use; accounting rules may be disputed but there is no argument about the benefits of a canny combination of information, circumstances, and purpose. Nonetheless, assessing knowledge returns is hampered by the lack of traceability: if a part of knowledge is explicit and subject to symbolic representation, another is implicit and manifests itself only through actual behaviors. At philosophical level it’s the line drawn by Wittgenstein: “The limits of my language mean the limits of my world”;  at technical level it’s AI’s two-lanes approach: symbolic rule-based engines vs non symbolic neural networks; at corporate level implicit knowledge is seen as some unaccounted for aspect of intangible assets when not simply blended into corporate culture. With knowledge becoming a primary success factor, a more reasoned approach of its processing is clearly needed.

To begin with, symbolic knowledge can be plied by logic, which, quoting Wittgenstein again, “takes care of itself; all we have to do is to look and see how it does it.” That would be true on two conditions:

  • Domains are to be well circumscribed. 
  • A water-tight partition must be secured between the logic of representations and the semantics of domains.

That could be achieved with modular and specific ontologies built on a clear distinction between common representation syntax and specific domains semantics.

As for non-symbolic knowledge, its processing has for long been overshadowed by the preeminence of symbolic rule-based schemes, that is until neural networks got the edge and deep learning overturned the playground. In a few years’ time practically unlimited access to raw data and the exponential growth in computing power have opened the door to massive sources of unexplored knowledge which is paradoxically both directly relevant yet devoid of immediate meaning:

  • Relevance: mined raw data is supposed to reflect the geology and dynamics of targeted markets.
  • Meaning: the main value of that knowledge rests on its implicit nature; applying existing semantics would add little to existing knowledge.

Assuming that deep learning can transmute raw base metals into knowledge gold, enterprises would need to understand, assess, and improve the refining machinery. That could be done with ontological frames.

A Proof of Concept

Compared to tangible assets knowledge may appear as very elusive, yet, and contrary to intangible ones, knowledge is best understood as the outcome of processes that can be properly designed, assessed, and improved. And that can be achieved with profiled ontologies.

As a Proof of Concept, an ontological kernel has been developed along two principles:

  • A clear-cut distinction between truth-preserving representation and domain specific semantics.
  • Profiled ontologies designed according to the nature of contents (concepts, documents, or artifacts), layers (environment, enterprise, systems, platforms), and contexts (institutional, professional, corporate, social.

That provides for a seamless integration of information processing, from data mining to knowledge management and decision making:

  • Data is first captured through aspects.
  • Categories are used to process data into information on one hand, design production systems on the other hand.
  • Concepts serve as bridges to knowledgeable information.

CaKe_DataInfoKnow

A beta version is available for comments on the Stanford/Protégé portal with the link: Caminao Ontological Kernel (CaKe).

Further Reading

External Links