Semantic Interoperability: Stories & Cases

Preamble

For all intents and purposes, digital transformation has opened the door to syntactic interoperability… and thus raised the issue of the semantic one.

Cooked Semantics (Urs Fisher)

To put the issue in perspective, languages combine four levels of interpretation:

  • Syntax: how terms can be organized.
  • Lexical: meaning of terms independently of syntactic constructs.
  • Semantic: meaning of terms in syntactic constructs.
  • Pragmatic: semantics in context of use.
Languages levels of interpretation

At first, semantic networks (aka conceptual graphs) appear to provide the answer; but that’s assuming flat ontologies (aka thesaurus) within which all semantics are defined at the same level. That would go against the objective of bringing the semantics of business domains and systems architectures under a single conceptual roof. The problem and a solution can be expounded taking users stories and use cases for examples.

Crossing stories & cases

Beside the difference in perspectives, users stories and use cases stand at a methodological crossroad, the former focused on natural language, the latter on modeling. Using ontologies to ensure semantic interoperability is to enhance both traceability and transparency while making room for their combination if and when called for.

Set at the inception of software engineering processes, users’ stories and use cases mark an inflexion point between business requirements and supporting systems functionalities: where and when are determined (a) the nature of interfaces between business processes and systems components and, (b) how to proceed with development models, iterative or model based.

Users’ stories are part and parcel of Agile development model, their backbone, engine, and fuel. But as far as Agile is concerned, users’ stories introduce a dilemma: once being told stories are meant to be directly and iteratively put down in code; documenting them in words would bring back traditional requirements and phased development. Hence the benefits of sorting out and writing up the intrinsic elements of stories as to ensure the continuity and consistency of engineering processes, whether directly to code, or through the mediation of use cases.

To that end semantic interoperability would have to be achieved for actors, events, and activities.

Actors & Events

Whatever architectures or modeling methodologies, actors and events are sitting on systems’ fences, which calls for semantics common to enterprise organization and business processes on one side of the fence, supporting systems on the other side.

To begin with events, the distinction between external and internal ones is straightforward for use cases, because their purpose is precisely to describe the exchanges between systems and environments. Not so for users stories because at their stage the part to be played by supporting systems is still undecided, and by consequence the distinction between external and internal events.

With regard to actors, and to avoid any ambiguity, a semantic distinction could be maintained between roles, defined by organizations, and actors (UML parlance), for roles as enacted by agents interacting with systems. While roles and actors are meant to converge with analysis, understandings may initially differ across the fence between users stories and use cases, to be reconciled at the end of the day.

Representations should support the semantic distinctions as well as trace their convergence.

That would enable use cases and users stories to share overlapping yet consistent semantics for primary actors and external events:

  • Across stories: actors contributing to different stories affected by the same events.
  • Along processes: use cases set for actors and events defined in stories.
  • Across time-frames: actors and events first introduced by use cases before being refined by “pre-sequel” users stories.

Such ontology-based representations are to support full iterative as well as parallel developments independently of the type of methods, diagrams or documents used by projects.

activities

Users’ stories and use cases are set in different perspectives, business processes for the former, supporting systems for the latter. As already noted, their scopes overlap for events and actors which can be defined upfront providing a double distinction between roles (enterprise view) and actors (systems view), and between external and internal events.

Activities raise more difficulties because they are meant to be defined and refined across the whole of engineering processes:

  • From business operations as described by users to business functions as conceived by stakeholders.
  • From business logic as defined in business processes to their realization as defined in diagram sequences.
  • From functional requirements (e.g users authentication or authorization) to quality of service.
  • From primitives dealing with integrity constraints to business policies managed through rules engines.

To begin with, if activities have to be consistently defined for both users’ stories and use cases, their footprint should tally the description of actors and events stipulated above; taking a leaf from Aristotle rule of the three units, activity units should therefore:

  • Be triggered by a single event initiated by a single primary actor.
  • Be located into a single physical space with all resources at hand.
  • Timed by a single clock controlling accesses to all resources.

On that basis, the refinement of descriptions could go according to the nature of requirements: business (users’ stories), or functional and quality of service (use cases) .

Activities (execution units) should be tally with roles, events, and location.
Use cases wrap computation independent activities into transactions.

As far as ontologies are concerned, the objective is to ensure the continuity and consistency of representations independently of modeling tools and methodologies. For activities appearing in users stories and use cases, that would require:

  • The description of activities in relation with their business background, their execution in processes, and the corresponding functions already supported by systems.
  • The progressive refinement of roles (users, devices, other systems), location, and resources (objects or surrogates).
  • An unified definition of alternatives in stories (branches) and use cases (extension points)

The last point is of particular importance as it will determine how business and functional rules are to be defined and control implemented.

Knitting semantics: symbolic representations

The scope and complexity of semantic interoperability can be illustrated a contrario by a simple activity (checking out) described at different levels with different methods (process, use case, user story), possibly by different people at different time.

The Check-out activity is first introduced at business level (process), next a specific application is developed with agile (user story), and then extended for variants according to channels (use case).

Semantic interoperability between projects, domains, and methods.

Assuming unfettered naming (otherwise semantic interoperability would be a windfall), three parties can be mentioned under various monikers for renters, drivers, and customers.

In a flat semantic context renter could be defined as a subtype of customer, itself a subtype of party. But that option would contradict the neutrality objective as there is no reason to assume a modeling consensus across domains, methods, and time.

  • The ontological kernel defines parties and actors, as roles associated to agents (organization level).
  • Enterprises define customers as parties (business model).
  • Business unit can defines renters in reference to customers (business process) or directly as a subtype of role (user story).
  • The distinction between renters and drivers can be introduced upfront or with use cases’ actors.

That would ensure semantic interoperability across modeling paradigms and business domains, and along time and transformations.

Probing semantics: metonymies and metaphors

Once established in-depth foundations, and assuming built-in basic logic and lexical operators, semantic interoperability is to be carried out with two basic linguistic contraptions: metonymies and metaphors .

Metonymies and metaphors are linguistic constructs used to substitute a word (or a phrase) by another without altering its meaning, respectively through extensions and intensions, the former standing for the actual set of objects and behaviors, the latter for the set of features that characterize these instances.

Metonymy relies on contiguity to substitute target terms for source ones, contiguity being defined with regard to their respective extensions. For instance, given that US Presidents reside at the White House, Washington DC, each term can be used instead.

Metonymy use physical or functional proximity (full line) to match extensions (dashed line)

Metaphor uses similarity to substitute target terms for source ones, similarity being defined with regard to a shared subset of features, with leftovers taken out of the picture.

Metaphor uses similarity to match descriptions

Compared to basic thesaurus operators for synonymy, antonymy, and homonymy, which are set at lexical level, metonymy and metaphor operate at conceptual level, the former using set of instances (extensions) to probe semantics, the latter using descriptions (intensions).

Applied to users stories and use cases:

  • Metonymies: terms would be probed with regard to actual sets of objects, actors, events, and execution paths (data from operations) or mined from digital environments.
  • Metaphors: terms for stories, cases, actors, events, and activities would be probed with regard to the structure and behavior of associated descriptions (intensions).

Compared to the shallow one set at thesaurus level for terms, deep semantic interoperability encompasses all ontological dimensions, from actual instances to categories, aspects, and concepts. As such it can take full advantage of digital transformation and deep learning technologies.

further reading

Business Capabilities as Philosophers’ Stone ?

Preamble

To hear the buzz around business capabilities one would expect some consensus about basic principles as well as an established track record. Since there is little to be found on either account, should the notion be seen as a modern philosophers’ stone ?

People, System, Environment

Clear evidence can be found by asking two questions: what should be looked for, and why it can’t be found.

What is looked for

Business capabilities can be understood as a modern avatar of the medieval philosophers’ stone, a alchemical substance capable of turning base metals into gold.

In the context of corporate governance, that would mean a combination of assets blueprints and managing principles paving the way to success.

But such a quest is to err between the sands of businesses specificities and the clouds of accounting generalities.

At ground level enterprises have to mark their territory and keep it safe from competitors. Whatever the means they use (niche segments, effective organization, monopolistic situations, …,) success comes from making a difference.

With hindsight, revealing singularities may be discovered among the idiosyncrasies of business successes, but that can only be done from accounting heights, where capabilities are clouded by numbers.

why it can’t be found

The fallacy of a notion can also be established a contrario if, assuming the existence of a philosophers’ stone, the same logic would also demonstrate the futility of the quest.

Such a reasoning appears more like a truism when applied to business capabilities: insofar as business competition is concerned success is exclusive and cutting edges are not shared. It ensues that assuming business capabilities could be found, they would by the same move become obsolete and be instantly dissolved.

What should be looked for

As far as business environments are concerned, success is by nature singular and transient, and it consequently depends on sustaining a balancing act between assets and opportunities. To that end business capabilities should be understood as a hub between value chains and enterprise architectures.

fURTHER READING

Squared Outline: Business Capabilities

Despite (or because) their ubiquity across powerpoint presentations, business capabilities appear under a wide range of guises. Putting them in perspectives could clarify the issue.

To begin with, business capabilities should not be confused with systems ones as they are supposed to be driven by changing environments and opportunities, in contrast to continuity, integrity, and returns on investments. Were it not for the need to juggle with both there would be no need of chief “whatever” officers.

Then, if they are to be assessed across changing contexts and concerns, business capabilities should not be tied to specific ones but focus on enterprise wherewithal :

  • Material: capacity and maturity of platforms with regard to changes in business processes and environments.
  • Functional: capacity and maturity of supporting systems with regard to
    changes in business processes.
  • Organizational: versatility and plasticity of roles and processes in dealing with changes in business opportunities.
  • Intelligence: information assets and ability of people to use them.

These could then be adjusted with regard to finance and time:

  • Strategic: assets, to be deployed and paid for across a number of business exercices.
  • Tactical: resources, to be deployed and paid for within single
    business exercices.
  • Particular: combined assets and resources needed to support specific value chains.

The role of enterprise architects would then to plan, assess, and manage the dynamic alignment of business and architecture capabilities.

FURTHER READING

Squared Outline: Actors


UML Actors (aka Roles) are meant to provide a twofold description of interactions between systems and their environment: organization and business process on one hand, system and applications on the other hand.

That can only be achieved by maintaining a conceptual distinction between actual agents, able to physically interact with systems, and actors (aka roles), which are their symbolic avatars as perceived by applications.

As far as the purpose is to describe interactions, actors should be primary characterized by the nature of language (symbolic or not), and identification coupling (biological or managed):

  1. Symbolic communication, no biological identification (systems)
  2. Analog communication, no biological identification (active devices or equipments)
  3. Symbolic communication, biological identification (people)
  4. Analog communication, biological identification (live organisms)

While there has been some confusion between actors (or roles) and agents, a clear-cut distinction is now a necessity due to the centrality of privacy issues, whether it is from business or regulatory perspective.

FURTHER READING

Squared Outline: Requirements

Depending on context and purpose requirements can be understood as customary documents, contents, or work in progress.

  1. Given that requirements are the entry point of engineering processes, nothing should be assumed regarding their form (natural, formal, or specific language), or content (business, functional, non-functional, or technical).
  2. Depending on the language used, requirements can be directly analyzed and engineered, or may have to be first formatted (aka captured).
  3. Requirements taxonomy should be set with regard to processes (business or architecture driven) and stakeholders (business units or enterprise architecture).
  4. Depending on content and context, requirements can be engineered as a whole (agile development models), or set apart as to tally with external dependencies (phased development models).

Further Reading

Squared Outline: Processes

While processes and activities are often defined together, the primary purpose of processes is to specify how activities are to be carried out if and when activities have to be executed separately.

Given the focus on execution, definitions of processes should be aligned with the classification of events and time, namely the nature of flows and coupling:

  1. No flows (computation).
  2. Information flows between activities.
  3. Actual flows between activities, asynchronous coupling.
  4. Actual flows, synchronous coupling.

That taxonomy could be used to define execution units in line with activities and the states of objects and expectations.

FURTHER READING

 

Value Chains & EA

Preamble

The seamless integration of enterprise systems into digital business environments calls for a resetting of value chains with regard to enterprise architectures, and more specifically supporting assets.

daniel-jacoby-tecnopor
Value Chains & Support (Daniel Jacoby)

Concerning value chains, the traditional distinction between primary and supporting activities is undermined by the generalization of digital flows, rapid changes in business environments, and the ubiquity of software agents. As for assets, the distinction could even disappear due to the intertwining of tangibles resources with organization,  information, and knowledge .

These difficulties could be overcome by bypassing activities and drawing value chains directly between business processes and systems capabilities.

From Activities to Processes

In theory value chains are meant to track down the path of added value across enterprise architectures; in practice their relevancy is contingent on specificity: fine when set along silos, less so if set across business functions. Moreover, value chains tied to static mappings of primary and support activities risk losing their grip when maps are redrawn, which is bound to happen more frequently with digitized business environments.

These shortcomings can be fixed by replacing primary activities by processes and support ones by system capabilities, and redefining value chains accordingly.

SOAb_P2Caps
Substituting processes and capabilities for primary and support activities

From Processes to Functions & Capabilities

Replacing primary and support activities with processes and functions doesn’t remove value chains primary issue, namely their path along orthogonal dimensions.

That’s not to say that business processes cannot be aligned with self-contained value chains, but insofar as large and complex enterprises are concerned, value chains are to be set across business functions. Thus the benefit of resetting the issue at enterprise architecture level.

Borrowing EA description from the Zachman framework, the mapping of processes to capabilities is meant to be carried out through functions, with business processes on one hand, architectures capabilities on the other hand.

If nothing can be assumed about the number of functions or the number of crossed processes, EA primary capabilities can be clearly identified, and functions classified accordingly, e.g: boundaries, control, entities, computation. That classification (non exclusive, as symbolized by the crossed pentagons) coincides with that nature of adjustments induced by changes in business environments:

  • Diversity and flexibility are to be expected for interfaces to systems’ clients (users, devices, or other systems) and triggering events, as to tally with channels and changes in business and technology environments.
  • Continuity is critical for the identification and semantics of business objects whose consistency and integrity have to be maintained along time independently of users and processes.
  • In between, changes in processes control and business logic should be governed by business opportunities independently of  channels or platforms.

SOAb_BP2VaCh
Mapping Processes to Architectures Functions & Capabilities

Processes, primary or otherwise, would be sliced according to the nature of supporting capabilities e.g: standalone (a), real-time (b), client-server (c), orchestration service (d), business rules (e), DB access (f).

Value chains could then be attached to business processes along these functional guidelines.

Tying Value Chains to Processes

Bypassing activities is not without consequences for the meaning of value chains as the original static understanding is replaced by a dynamic one: since value chains are now associated to specific operations, they are better understood as changes than absolute level. That semantic shift reflects the new business environment, with manufacturing and physical flows having been replaced by mixed (SW and HW) engineering and digital flows.

Set in a broader economic perspective, the new value chains could be likened to a marginal version of returns on capital (ROC), i.e the delta of some ratio between value and contributing assets.

Digital business environments may also made value chains easier to assess as changes can be directly traced to requirements at enterprise level, and more accurately marked across systems functionalities:

  • Logical interfaces (users or systems): business value tied to interactions with people or other systems.
  • Physical interfaces (devices): business value tied to real-time interactions.
  • Business logic: business value tied to rules and computations.
  • Information architecture: business value tied to systems information contents.
  • Processes architecture: business value tied to processes integration.
  • Platform configurations: business value tied to resources deployed.

SOAb_P2TAssets
Marking Value Chains in terms of changes

The next step is to frame value chains across enterprise architectures in order to map values to contributing assets.

Assets & Organization

Value chains are arguably of limited use without weighting assets contribution. On that account, a major (if underrated) consequence of digital environments is the increasing weight of intangible assets brought about by the merge of actual and information flows and the rising importance of economic intelligence.

For value chains, that shift presents a double challenge: first because of the intrinsic difficulty of measuring intangibles, then because even formerly tangible assets are losing their homogeneity.

Redefining value chains at enterprise architecture level may help with the assessment of intangibles by bringing all assets, tangible or otherwise, into a common frame, reinstating organization as its nexus:

  • From the business perspective, that framing restates the primacy of organization for the harnessing of IT benefits.
  • From the architecture perspective, the centrality of organization appears when assets are ranked according to modality: symbolic (e.g culture), physical (e.g platforms), or a combination of both.

SOAb_BP2Assets
Ranking assets according to modality

On that basis enterprise organization can be characterized by what it supports (above) and how it is supported (below). Given the generalization of digital environments and business flows, one could then take organization and information systems as proxies for the whole of enterprise architecture and draw value chains accordingly.

Value Chains & Assets

Trendy monikers may differ but information architectures have become a key success factor for enterprises competing in digital environments. Their importance comes from their ability to combine three basic functions:

  1. Mining the continuous flows of relevant and up-to-date data.
  2. Analyzing and transforming data, feeding the outcome to information systems
  3. Putting that information to use in operational and strategic decision-making processes.

A twofold momentum is behind that integration: with regard to feasibility, it can be seen as a collateral benefit of the integration of actual and digital flows; with regard to opportunity, it can give a decisive competitive edge when fittingly carried through. That makes information architecture a reference of choice for intangible assets.

SOAb_P2OAssets
Assets Contribution to Value Chains

Insofar as enterprise architecture is concerned, value chains can then be threaded through three categories of assets:

  • Tangibles: operational resources supporting processes execution
  • Organization: roles, tasks, and responsibilities associated to processes
  • Intangibles: data mining, information contents, business intelligence, knowledge management, and decision-making.

That approach would simultaneously meet with the demands of digital environments, and add practical meaning to enterprise architecture as a discipline.

Further Reading