Stories In Logosphere

As championed by a brave writer, should we see the Web as a crib for born again narratives, or as a crypt for redundant texts.

melikOhanian_letters
Crib or Crypt (Melik Ohanian)

Once Upon A Time

Borrowing from Einstein, “the only reason for time is so that everything doesn’t happen at once.” That befits narratives: whatever the tale or the way it is conveyed, stories take time. Even if nothing happens, a story must be spelt in tempo and can only be listened to or read one step at a time.

In So Many Words

Stories have been told before being written, which is why their fabric is made of words, and their motifs weaved by natural languages. So, even if illustrations may adorn printed narratives, the magic of stories comes from the music of their words.

A Will To Believe

To enjoy a story, listeners or readers are to detach their mind from what they believe about reality, replacing dependable and well-worn representations with new and untested ones, however shaky or preposterous they may be; and that has to be done through an act of will.

Stories are make-beliefs: as with art in general, their magic depends on the suspension of disbelief. But suspension is not abolition; while deeply submerged in stories, listeners and readers maintain some inward track to the beliefs they left before diving; wandering a cognitive fold between surface truths and submarine untruths, they seem to rely on a secure if invisible tether to the reality they know. On that account, the possibility of an alternative reality is to transform a comforting fold into a menacing abyss, dissolving their lifeline to beliefs. That could happen to stories told through the web.

Stories & Medium

Assuming time rendering, stories were not supposed to be affected by medium; that is, until McLuhan’s suggestion of medium taking over messages. Half a century later internet and the Web are bringing that foreboding in earnest by melting texts into multimedia documents.

Tweets and Short Message Services (SMS) offer a perfect illustration of the fading of text-driven communication, evolving from concise (160 characters) text-messaging  to video-sharing.

That didn’t happen by chance but reflects the intrinsic visual nature of web contents, with dire consequence for texts: once lording it over entourages of media, they are being overthrown and reduced to simple attachments, just a peg above fac-simile. But then, demoting texts to strings of characters makes natural languages redundant, to be replaced by a web Esperanto.

Web Semantic Silos

With medium taking over messages, and texts downgraded to attachments, natural languages may lose their primacy for stories conveyed through the web, soon to be replaced by the so-called “semantic web”, supposedly a lingua franca encompassing the whole of internet contents.

As epitomized by the Web Ontology Language (OWL), the semantic web is based on a representation scheme made of two kinds of nodes respectively for concepts (squares) and conceptual relations (circles).

Scratch_WarPeace00
Semantic graphs (aka conceptual networks) combine knowledge representation (blue, left) and domain specific semantics (green, center & right)

Concept nodes are meant to represent categories specific to domains (green, right); that tallies with the lexical level of natural languages.

Connection nodes are used to define two types of associations:

  • Semantically neutral constructs to be applied uniformly across domains; that tallies with the syntactic level of natural languages (blue, left).
  • Domain specific relationships between concepts; that tallies with the semantic level of natural languages (green, center).

The mingle of generic (syntactic) and specific (semantic) connectors induces a redundant complexity which grows exponentially when different domains are to be combined, due to overlapping semantics. Natural languages typically use pragmatics to deal with the issue, but since pragmatics scale poorly with exponential complexity, they are of limited use for semantic web; that confines its effectiveness to silos of domain specific knowledge.

Scratch_silos.jpg
Natural Language Pragmatics As Bridges Across Domain Specific Silos

But semantic silos are probably not the best nurturing ground for stories.

Stories In Cobwebs

Taking for granted that text, time, and suspension of disbelief are the pillars of stories, their future on the web looks gloomy:

  • Texts have no status of their own on the web, but only appear as part of documents, a media among others.
  • Stories can bypass web practice by being retrieved before being read as texts or viewed as movies; but whenever they are “browsed” their intrinsic time-frame and tempo are shattered, and so is their music.
  • If lying can be seen as an inborn human cognitive ability, it cannot be separated from its role in direct social communication; such interactive background should also account for the transient beliefs in fictional stories. But lies detached from a live context and planted on the web are different beasts, standing on their own and bereft of any truth currency that could separate actual lies from fictional ones.

That depressing perspective is borne out by the tools supposed to give a new edge to text processing:

Hyper-links are part and parcel of internet original text processing. But as far and long as stories go, introducing links (hardwired or generated) is to hand narrative threads over to readers, and by so transforming them into “entertextment” consumers.

Machine learning can do wonders mining explicit and implicit meanings from the whole of past and present written and even spoken discourses. But digging stories out is more about anthropology or literary criticism than about creative writing.

As for the semantic web, it may work as a cobweb: by getting rid of pragmatics, deliberately or otherwise, it disables narratives by disengaging them from their contexts, cutting them out in one stroke from their original meaning, tempo, and social currency.

The Deconstruction of Stories

Curiously, what the web may do to stories seems to reenact a philosophical project which gained some favor in Europe during the second half of the last century. To begin with, the  deconstruction  philosophy was rooted in literary criticism, and its objective was to break the apparent homogeneity of narratives in order to examine the political, social, or ideological factors at play behind. Soon enough, a core of upholders took aim at broader philosophical ambitions, using deconstruction to deny even the possibility of a truth currency.

With the hindsight on initial and ultimate purposes of the deconstruction project, the web and its semantic cobweb may be seen as the stories nemesis.

Further Reading

External Links

Boost Your Mind Mapping

Preamble

Turning thoughts into figures faces the intrinsic constraint of dimension: two dimensional representations cannot cope with complexity.

van der Straet, Jan, 1523-1605; A Natural Philosopher in His Study
Making his mind about knowledge dimensions: actual world, descriptions, and reproductions (Jan van der Straet)

So, lest they be limited to flat and shallow thinking, mind cartographers have to introduce the cognitive equivalent of geographical layers (nature, demography, communications, economy,…), and archetypes (mountains, rivers, cities, monuments, …)

Nodes: What’s The Map About

Nodes in maps (aka roots, handles, …) are meant to anchor thinking threads. Given that human thinking is based on the processing of symbolic representations, mind mapping is expected to progress wide and deep into the nature of nodes: concepts, topics, actual objects and phenomena, artifacts, partitions, or just terms.

Mindmap00
What’s The Map About

It must be noted that these archetypes are introduced to characterize symbolic representations independently of domain semantics.

Connectors: Cognitive Primitives

Nodes in maps can then be connected as children or siblings, the implicit distinction being some kind of refinement for the former, some kind of equivalence for the latter. While such a semantic latitude is clearly a key factor of creativity, it is also behind the poor scaling of maps with complexity.

A way to frame complexity without thwarting creativity would be to define connectors with regard to cognitive primitives, independently of nodes’ semantics:

  • References connect nodes as terms.
  • Associations: connect nodes with regard to their structural, functional, or temporal proximity.
  • Analogies: connect nodes with regard to their structural or functional similarities.

At first, with shallow nodes defined as terms, connections can remain generic; then, with deeper semantic levels introduced, connectors could be refined accordingly for concepts, documentation, actual objects and phenomena, artifacts,…

Mindmap11
Connectors are aligned with basic cognitive mechanisms of metonymy (associations) and analogy (similarities)

Semantics: Extensional vs Intensional

Given mapping primitives defined independently of domains semantics, the next step is to take into account mapping purposes:

  • Extensional semantics deal with categories of actual instances of objects or phenomena.
  • Intensional semantics deal with specifications of objects or phenomena.

That distinction can be applied to basic semantic archetypes (people, roles, events, …) and used to distinguish actual contexts, symbolic representations, and specifications, e.g:

Mindmap20xi
Extensions (full border) are about categories of instances, intensions (dashed border) are about specifications
  • Car (object) refers to context, not to be confused with Car (surrogate) which specified the symbolic counterpart: the former is extensional (actual instances), the latter intensional (symbolic representations)
  • Maintenance Process is extensional (identified phenomena), Operation is intensional (specifications).
  • Reservation and Driver are symbolic representations (intensional), Person is extensional (identified instances).

It must be reminded that whereas the choice is discretionary and contingent on semantic contexts and modeling purposes (‘as-it-is’ vs ‘as-it-should-be’), consequences are not because the choice is to determine abstraction semantics.

For example, the records for cars, drivers, and reservations are deemed intensional because they are defined by business concerns. Alternatively, instances of persons and companies are defined by contexts and therefore dealt with as extensional descriptions.

Abstractions: Subsets & Sub-types

Thinking can be characterized as a balancing act between making distinctions and managing the ensuing complexity. To that end, human edge over other animal species is the use of symbolic representations for specialization and generalization.

That critical mechanism of human thinking is often overlooked by mind maps due to a confused understanding of inheritance semantics:

  • Strong inheritance deals with instances: specialization define subsets and generalization is defined by shared structures and identities.
  • Weak inheritance deals with specifications: specialization define sub-types and generalization is defined by shared features.
Mindmap30
Inheritance semantics: shared structures (dark) vs shared features (white)

The combination of nodes (intension/extension) and inheritance (structures/features) semantics gives cartographers two hands: a free one for creative distinctions, and a safe one for the ensuing complexity. e.g:

  • Intension and weak inheritance: environments (extension) are partitioned according to regulatory constraints (intension); specialization deals with subtypes and generalization is defined by shared features.
  • Extension and strong inheritance: cars (extension) are grouped according to motorization; specialization deals with subsets and generalization is defined by shared structures and identities.
  • Intension and strong inheritance: corporate sub-type inherits the identification features of type Reservation (intension).

Mind maps built on these principles could provide a common thesaurus encompassing the whole of enterprise data, information and knowledge.

Intelligence: Data, Information, Knowledge

Considering that mind maps combine intelligence and cartography, they may have some use for enterprise architects, in particular with regard to economic intelligence, i.e the integration of information processing, from data mining to knowledge management and decision-making:

  • Data provide the raw input, without clear structures or semantics (terms or aspects).
  • Categories are used to process data into information on one hand (extensional nodes), design production systems on the other hand (intensional nodes).
  • Abstractions (concepts) makes knowledge from information by putting it to use.

Conclusion

Along that perspective mind maps could serve as front-ends for enterprise architecture ontologies, offering a layered cartography that could be organized according to concerns:

Enterprise architects would look at physical environments, business processes, and functional and technical systems architectures.

mups_Layers
Using layered maps to visualize enterprise architectures

Knowledge managers would take a different perspective and organize the maps according to the nature and source of data, information, and knowledge.intelligence w

mups_Ontos
Using layered maps to build economic intelligence

As demonstrated by geographic information systems, maps built on clear semantics can be combined to serve a wide range of purposes; furthering the analogy with geolocation assistants, layered mind maps could be annotated with punctuation marks (e.g ?, !, …) in order to support problem-solving and decision-making.

Further Reading

External Links

Collaborative Systems Engineering: From Models to Ontologies

Given the digitization of enterprises environments, engineering processes have to be entwined with business ones while kept in sync with enterprise architectures. That calls for new threads of collaboration taking into account the integration of business and engineering processes as well as the extension to business environments.

Wang-Qingsong_scaffold
Collaboration can be personal and direct, or collective and mediated (Wang Qingsong)

Whereas models are meant to support communication, traditional approaches are already straining when used beyond software generation, that is collaboration between humans and CASE tools. Ontologies, which can be seen as a higher form of models, could enable a qualitative leap for systems collaborative engineering at enterprise level.

Systems Engineering: Contexts & Concerns

To begin with contents, collaborations should be defined along three axes:

  1. Requirements: business objectives, enterprise organization, and processes, with regard to systems functionalities.
  2. Feasibility: business requirements with regard to architectures capabilities.
  3. Architectures: supporting functionalities with regard to architecture capabilities.
RekReuse_BFCo
Engineering Collaborations at Enterprise Level

Since these axes are usually governed by different organizational structures and set along different time-frames, collaborations must be supported by documentation, especially models.

Shared Models

In order to support collaborations across organizational units and time-frames, models have to bring together perspectives which are by nature orthogonal:

  • Contexts, concerns, and languages: business vs engineering.
  • Time-frames and life-cycle: business opportunities vs architecture stability.
EASquare2_eam.jpg
Harnessing MBSE to EA

That could be achieved if engineering models could be harnessed to enterprise ones for contexts and concerns. That is to be achieved through the integration of processes.

 Processes Integration

As already noted, the integration of business and engineering processes is becoming a key success factor.

Processes integration

For that purpose collaborations would have to take into account the different time-frames governing changes in business processes (driven by business value) and engineering ones (governed by assets life-cycles):

  • Business requirements engineering is synchronic: changes must be kept in line with architectures capabilities (full line).
  • Software engineering is diachronic: developments can be carried out along their own time-frame (dashed line).
EASq2_wrkflw
Synchronic (full) vs diachronic (dashed) processes.

Application-driven projects usually focus on users’ value and just-in-time delivery; that can be best achieved with personal collaboration within teams. Architecture-driven projects usually affect assets and non-functional features and therefore collaboration between organizational units.

Collaboration: Direct or Mediated

Collaboration can be achieved directly or through some mediation, the former being a default option for applications, the latter a necessary one for architectures.

Cycles_collabs00

Both can be defined according to basic cognitive and organizational mechanisms and supported by a mix of physical and virtual spaces to be dynamically redefined depending on activities, projects, locations, and organisation.

Direct collaborations are carried out between individuals with or without documentation:

  • Immediate and personal: direct collaboration between 5 to 15 participants with shared objectives and responsibilities. That would correspond to agile project teams (a).
  • Delayed and personal: direct collaboration across teams with shared knowledge but with different objectives and responsibilities. That would tally with social networks circles (c).
Cycles_collabs.jpg
Collaborations

Mediated collaborations are carried out between organizational units through unspecified individual members, hence the need of documentation, models or otherwise:

  • Direct and Code generation from platform or domain specific models (b).
  • Model transformation across architecture layers and business domains (d)

Depending on scope and mediation, three basic types of collaboration can be defined for applications, architecture, and business intelligence projects.

EASq2_collabs
Projects & Collaborations

As it happens, collaboration archetypes can be associated with these profiles.

Collaboration Mechanisms

Agile development model (under various guises) is the option of choice whenever shared ownership and continuous delivery are possible. Application projects can so be carried out autonomously, with collaborations circumscribed to team members and relying on the backlog mechanism.

The OODA (Observation, Orientation, Decision, Action) loop (and avatars) can epitomize projects combining operations, data analytics, and decision-making.

EASquare2_collaMechas
Collaboration archetypes

Projects set across enterprise architectures cannot be carried out without taking into account phasing constraints. While ill-fated Waterfall methods have demonstrated the pitfalls of procedural solutions, phasing constraints can be dealt with a roundabout mechanism combining iterative and declarative schemes.

Engineering vs Business Driven Collaborations

With collaborative engineering upgraded at enterprise level, the main challenge is to iron out frictions between application and architecture projects and ensure the continuity, consistency and effectiveness of enterprise activities. That can be achieved with roundabouts used as a collaboration mechanism between projects, whatever their nature:

  • Shared models are managed at roundabout level.
  • Phasing dependencies are set in terms of assertions on shared models.
  • Depending on constraints projects are carried out directly (1,3) or enter roundabouts (2), with exits conditioned by the availability of models.
Engineering driven collaboration: roundabout and backlogs

Moreover, with engineering embedded in business processes, collaborations must also bring together operational analytics, decision-making, and business intelligence. Here again, shared models are to play a critical role:

  • Enterprise descriptive and prescriptive models for information maps and objectives
  • Environment predictive models for data and business understanding.
OKBI_BIDM
Business driven collaboration: operations and business intelligence

Whereas both engineering and business driven collaborations depend on sharing information  and knowledge, the latter have to deal with open and heterogeneous semantics. As a consequence, collaborations must be supported by shared representations and proficient communication languages.

Ontologies & Representations

Ontologies are best understood as models’ backbones, to be fleshed out or detailed according to context and objectives, e.g:

  • Thesaurus, with a focus on terms and documents.
  • Systems modeling,  with a focus on integration, e.g Zachman Framework.
  • Classifications, with a focus on range, e.g Dewey Decimal System.
  • Meta-models, with a focus on model based engineering, e.g models transformation.
  • Conceptual models, with a focus on understanding, e.g legislation.
  • Knowledge management, with a focus on reasoning, e.g semantic web.

As such they can provide the pillars supporting the representation of the whole range of enterprise concerns:

KM_OntosCapabs

Taking a leaf from Zachman’s matrix, ontologies can also be used to differentiate concerns with regard to architecture layers: enterprise, systems, platforms.

Last but not least, ontologies can be profiled with regard to the nature of external contexts, e.g:

  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to established procedures.
  • Corporate: Defined by enterprises, changes subject to internal decision-making.
  • Social: Defined by usage, volatile, continuous and informal changes.
  • Personal: Customary, defined by named individuals (e.g research paper).
Cross profiles: capabilities, enterprise architectures, and contexts.

Ontologies & Communication

If collaborations have to cover engineering as well as business descriptions, communication channels and interfaces will have to combine the homogeneous and well-defined syntax and semantics of the former with the heterogeneous and ambiguous ones of the latter.

With ontologies represented as RDF (Resource Description Framework) graphs, the first step would be to sort out truth-preserving syntax (applied independently of domains) from domain specific semantics.

KM_CaseRaw
RDF graphs (top) support formal (bottom left) and domain specific (bottom right) semantics.

On that basis it would be possible to separate representation syntax from contents semantics, and to design communication channels and interfaces accordingly.

That would greatly facilitate collaborations across externally defined ontologies as well as their mapping to enterprise architecture models.

Conclusion

To summarize, the benefits of ontological frames for collaborative engineering can be articulated around four points:

  1. A clear-cut distinction between representation semantics and truth-preserving syntax.
  2. A common functional architecture for all users interfaces, humans or otherwise.
  3. Modular functionalities for specific semantics on one hand, generic truth-preserving and cognitive operations on the other hand.
  4. Profiled ontologies according to concerns and contexts.
KM_OntosCollabs
Clear-cut distinction (1), unified interfaces architecture (2), functional alignment (3), crossed profiles (4).

A critical fifth benefit could be added with regard to business intelligence: combined with deep learning capabilities, ontologies would extend the scope of collaboration to explicit as well as implicit knowledge, the former already framed by languages, the latter still open to interpretation and discovery.

Further Reading

 

Ontologies as Productive Assets

Preamble

An often overlooked benefit of artificial intelligence has been a renewed interest in seminal philosophical and cognitive topics; ontologies coming top of the list.

The Thinker Monkey, Breviary of Mary of Savoy
The Thinker Monkey, Breviary of Mary of Savoy

Yet that interest has often been led astray by misguided perspectives, in particular:

  • Universality: one-fits-all approaches are pointless if not self-defeating considering that ontologies are meant to target specific domains of concerns.
  • Implementation: the focus is usually put on representation schemes (commonly known as Resource Description Frameworks, or RDFs), instead of the nature of targeted knowledge and the associated cognitive capabilities.

Those misconceptions, often combined, may explain the limited practical inroads of ontologies. Conversely, they also point to ontologies’ wherewithal for enterprises immersed into boundless and fluctuating knowledge-driven business environments.

Ontologies as Assets

Whatever the name of the matter (data, information or knowledge), there isn’t much argument about its primacy for business competitiveness; insofar as enterprises are concerned knowledge is recognized as a key asset, as valuable if not more than financial ones, and should be managed accordingly. Pushing the comparison still further, data would be likened to liquidity, information to fixed income investment, and knowledge to capital ventures. To summarize, assets whatever their nature lose value when left asleep and bear fruits when kept awake; that’s doubly the case for data and information:

  • Digitized business flows accelerates data obsolescence and makes it continuous.
  • Shifting and porous enterprises boundaries and markets segments call for constant updates and adjustments of enterprise information models.

But assessing the business value of knowledge has always been a matter of intuition rather than accounting, even when it can be patented; and most of knowledge shapes up well beyond regulatory reach. Nonetheless, knowledge is not manna from heaven but the outcome of information processing, so assessing the capabilities of such processes could help.

Admittedly, traditional modeling methods are too stringent for that purpose, and looser schemes are needed to accommodate the open range of business contexts and concerns; as already expounded, that’s precisely what ontologies are meant to do, e.g:

  • Systems modeling,  with a focus on integration, e.g Zachman Framework.
  • Classifications, with a focus on range, e.g Dewey Decimal System.
  • Conceptual models, with a focus on understanding, e.g legislation.
  • Knowledge management, with a focus on reasoning, e.g semantic web.

And ontologies can do more than bringing under a single roof the whole of enterprise knowledge representations: they can also be used to nurture and crossbreed symbolic assets and develop innovative ones.

Ontologies Benefits

Knowledge is best understood as information put to use; accounting rules may be disputed but there is no argument about the benefits of a canny combination of information, circumstances, and purpose. Nonetheless, assessing knowledge returns is hampered by the lack of traceability: if a part of knowledge is explicit and subject to symbolic representation, another is implicit and manifests itself only through actual behaviors. At philosophical level it’s the line drawn by Wittgenstein: “The limits of my language mean the limits of my world”;  at technical level it’s AI’s two-lanes approach: symbolic rule-based engines vs non symbolic neural networks; at corporate level implicit knowledge is seen as some unaccounted for aspect of intangible assets when not simply blended into corporate culture. With knowledge becoming a primary success factor, a more reasoned approach of its processing is clearly needed.

To begin with, symbolic knowledge can be plied by logic, which, quoting Wittgenstein again, “takes care of itself; all we have to do is to look and see how it does it.” That would be true on two conditions:

  • Domains are to be well circumscribed. 
  • A water-tight partition must be secured between the logic of representations and the semantics of domains.

That could be achieved with modular and specific ontologies built on a clear distinction between common representation syntax and specific domains semantics.

As for non-symbolic knowledge, its processing has for long been overshadowed by the preeminence of symbolic rule-based schemes, that is until neural networks got the edge and deep learning overturned the playground. In a few years’ time practically unlimited access to raw data and the exponential growth in computing power have opened the door to massive sources of unexplored knowledge which is paradoxically both directly relevant yet devoid of immediate meaning:

  • Relevance: mined raw data is supposed to reflect the geology and dynamics of targeted markets.
  • Meaning: the main value of that knowledge rests on its implicit nature; applying existing semantics would add little to existing knowledge.

Assuming that deep learning can transmute raw base metals into knowledge gold, enterprises would need to understand, assess, and improve the refining machinery. That could be done with ontological frames.

A Proof of Concept

Compared to tangible assets knowledge may appear as very elusive, yet, and contrary to intangible ones, knowledge is best understood as the outcome of processes that can be properly designed, assessed, and improved. And that can be achieved with profiled ontologies.

As a Proof of Concept, an ontological kernel has been developed along two principles:

  • A clear-cut distinction between truth-preserving representation and domain specific semantics.
  • Profiled ontologies designed according to the nature of contents (concepts, documents, or artifacts), layers (environment, enterprise, systems, platforms), and contexts (institutional, professional, corporate, social.

That provides for a seamless integration of information processing, from data mining to knowledge management and decision making:

  • Data is first captured through aspects.
  • Categories are used to process data into information on one hand, design production systems on the other hand.
  • Concepts serve as bridges to knowledgeable information.

CaKe_DataInfoKnow

A beta version is available for comments on the Stanford/Protégé portal with the link: Caminao Ontological Kernel (CaKe).

Further Reading

External Links

Open Ontologies: From Silos to Architectures

To be of any use for enterprises, ontologies have to embrace a wide range of contexts and concerns, often ill-defined for environments, rather well expounded for systems.

Circumscribed Contexts & Crossed Concerns (Robert Goben)

And now that enterprises have to compete in open, digitized, and networked environments, business and systems ontologies have to be combined into modular knowledge architectures.

Ontologies & Contexts

If open-ended business contexts and concerns are to be taken into account, the first step should be to characterize ontologies with regard to their source, justification, and the stability of their categories, e.g:

  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to accords.
  • Corporate: Defined by enterprises, changes subject to internal decision-making.
  • Social: Defined by usage, volatile, continuous and informal changes.
  • Personal: Customary, defined by named individuals (e.g research paper).

Assuming such an external taxonomy, the next step would be to see what kind of internal (i.e enterprise architecture) ontologies can be fitted into, as it’s the case for the Zachman framework.

The Zachman’s taxonomy is built on well established concepts (Who,What,How, Where, When) applied across architecture layers for enterprise (business and organization), systems (logical structures and functionalities), and platforms (technologies). These layers can be generalized and applied uniformly across external contexts, from well-defined (e.g regulations) to fuzzy (e.g business prospects or new technologies) ones, e.g:

Ontologies, capabilities (Who,What,How, Where, When), and architectures (enterprise, systems, platforms).

That “divide to conquer” strategy is to serve two purposes:

  • By bridging the gap between internal and external taxonomies it significantly enhances the transparency of governance and decision-making.
  • By applying the same motif (Who,What, How, Where, When) across the semantics of contexts, it opens the door to a seamless integration of all kinds of knowledge: enterprise, professional, institutional, scientific, etc.

As can be illustrated using Zachman concepts, the benefits are straightforward at enterprise architecture level (e.g procurement), due to the clarity of supporting ontologies; not so for external ones, which are by nature open and overlapping and often come with blurred semantics.

Ontologies & Concerns

A broad survey of RDF-based ontologies demonstrates how semantic overlaps and folds can be sort out using built-in differentiation between domains’ semantics on one hand, structure and processing of symbolic representations on the other hand. But such schemes are proprietary, and evidence shows their lines seldom tally, with dire consequences for interoperability: even without taking into account relationships and integrity constraints, weaving together ontologies from different sources is to be cumbersome, the costs substantial, and the outcome often reduced to a muddy maze of ambiguous semantics.

The challenge would be to generalize the principles as to set a basis for open ontologies.

Assuming that a clear line can be drawn between representation and contents semantics, with standard constructs (e.g predicate logic) used for the former, the objective would be to classify ontologies with regard to their purpose, independently of their representation.

The governance-driven taxonomy introduced above deals with contexts and consequently with coarse-grained modularity. It should be complemented by a fine-grained one to be driven by concerns, more precisely by the epistemic nature of the individual instances to be denoted. As it happens, that could also tally with the Zachman’s taxonomy:

  • Thesaurus: ontologies covering terms and concepts.
  • Documents: ontologies covering documents with regard to topics.
  • Business: ontologies of relevant enterprise organization and business objects and activities.
  • Engineering: symbolic representation of organization and business objects and activities.
KM_OntosCapabs
Ontologies: Purposes & Targets

Enterprises could then pick and combine templates according to domains of concern and governance. Taking an on-line insurance business for example, enterprise knowledge architecture would have to include:

  • Medical thesaurus and consolidated regulations (Knowledge).
  • Principles and resources associated to the web-platform (Engineering).
  • Description of products (e.g vehicles) and services (e.g insurance plans) from partners (Business).

Such designs of ontologies according to the governance of contexts and the nature of concerns would significantly reduce blanket overlaps and improve the modularity and transparency of ontologies.

On a broader perspective, that policy will help to align knowledge management with EA governance by setting apart ontologies defined externally (e.g regulations), from the ones set through decision-making, strategic (e.g plate-form) or tactical (e.g partnerships).

Open Ontologies’ Benefits

Benefits from open and formatted ontologies built along an explicit distinction between the semantics of representation (aka ontology syntax) and the semantics of context can be directly identified for:

Modularity: the knowledge basis of enterprise architectures could be continuously tailored to changes in markets and corporate structures without impairing enterprise performances.

Integration: the design of ontologies with regard to the nature of targets and stability of categories could enable built-in alignment mechanisms between knowledge architectures and contexts.

Interoperability: limited overlaps and finer granularity are to greatly reduce frictions when ontologies bearing out business processes are to be combined or extended.

Reliability: formatted ontologies can be compared to typed programming languages with regard to transparency, internal consistency, and external validity.

Last but not least, such reasoned design of ontologies may open new perspectives for the collaboration between cognitive humans and pretending ones.

Further Reading

External Links

2018: Clones vs Octopuses

In the footsteps of robots replacing workmen, deep learning bots look to boot out knowledge workers overwhelmed by muddy data.

Cloning Knowledge (Tadeusz Cantor, from “The Dead Class”)

Faced with that , should humans try to learn deeper and faster than clones, or should they learn from octopuses and their smart hands.

Machine Learning & The Economics of Clones

As illustrated by scan-reading AI machines, the spreading of learning AI technology in every nook and cranny introduces something like an exponential multiplier: compared to the power-loom of the Industrial Revolution which substituted machines for workers, deep learning is substituting replicators for machines; and contrary to power looms, there is no physical limitation on the number of smart clones that can be deployed. So, however fast and deep humans can learn, clones are much too prolific: it’s a no-win situation. To get out of that conundrum humans have to put their hand on a competitive edge, e.g some kind of knowledge that cannot be cloned.

Knowledge & Competition

Appraising humans learning sway over machines, one can take from Spinoza’s categories of knowledge with regard to sources:

  1. Senses (views, sounds, smells, touches) or beliefs (as nurtured by the supposed common “sense”). Artificial sensors can compete with human ones, and smart machines are much better if prejudiced beliefs are put into the equation.
  2. Reasoning, i.e the mental processing of symbolic representations. As demonstrated by AlphaGo, machines are bound to fast extend their competitive edge.
  3. Philosophy which is by essence meant to bring together perceptions, intuitions, and symbolic representations. That’s where human intelligence could beat its artificial cousin which is clueless when purposes are needed.

That assessment is bore out by evolution: the absolute dominance established by humans over other animal species comes from their use of knowledge, which can be summarized as:

  1. Use of symbolic representations.
  2. Ability to formulate and exchange representations of contexts, concerns, and policies.
  3. Ability to agree on stakes and cooperate on policies.

On that basis, the third dimension, i.e the use of symbolic knowledge to cooperate on non-zero-sum endeavors, can be used to draw the demarcation line between human and artificial intelligence:

  • Paths and paces of pursuits as part and parcel of the knowledge itself. The fact that both are mostly obviated by search engines gives humans some edge.
  • Operational knowledge is best understood as information put to use, and must include concerns and decision-making. But smart bots’ ubiquity and capabilities often sap information traceability and decisions transparency, which makes room for humans to prevail.

So humans can find a clear competitive edge in this knowledge dimension because it relies on a combination of experience and thinking and is therefore hard to clone. Organizations should make sure that’s where smart systems take back and humans take up.

Organization & Innovation

Innovation being at the root of competitive edge, understanding the role played by smart systems is a key success factor; that is to be defined by organization.

As epitomized by Henry Ford, industrial-era thinking associated innovation with top-down management and the specialization of execution:

  • At execution level manual tasks were to be fragmented and specialized.
  • At management level analysis and decision-making were to be centralized and abstracted.

That organizational paradigm puts a double restraint on innovation:

  • On execution side the fragmentation of manual tasks prevents workers from effectively assessing and improving their performances.
  • On management side knowledge is kept in conceptual boxes and bereft of feedback from actual uses.

That railing between smart brains and dumb hands may have worked well enough for manufacturing processes limited to material flows and subject to circumscribed and predictable technological changes. It didn’t last.

First, as such hierarchies necessarily grow with processes complexity, overheads and rigidity force repeated pruning. Then, flat hierarchies are of limited use when information flows are to be combined with material ones, so enterprises have to start with matrix organization. Finally, with the seamless integration of digital and material flows, perpetuating the traditional line between management and execution is bound to hamstring innovation:

  • Smart tools may be able to perform a wide range of physical tasks without human supervision, but the core of innovation core as well as its front lines are where human and machines collaborate in processing a mix of material and information flows, both learning from the experience.
  • Hierarchies and centralized decision-making are being cut out from feeders when set in networked business environments colonized by smart bots on both sides of corporate boundaries.

Not surprisingly, these innovation trends seem to tally with the social dimension of knowledge.

Learning from the Octopus

The AI revolution has already broken all historical records of footprint (everything is affected) and speed (a matter of years). Given the length of human education cycles, appraising the consequences comes with some urgency, beginning with the disposal of two entrenched beliefs:

At individual level the new paradigm could be compared to the nervous system of octopuses: each arm gets its brain and neurons, and so its own touch of knowledge and taste of decision-making.

On a broader (i.e enterprise) perspective, knowledge should be supported by two organizational layers, one direct and innovation-driven between trusted co-workers, the other networked and knowledge-driven between remote workers, trusted or otherwise.

Further Reading

External Links

NIEM & Information Exchanges

Preamble

The objective of the National Information Exchange Model (NIEM) is to provide a “dictionary of agreed-upon terms, definitions, relationships, and formats that are independent of how information is stored in individual systems.”

(Alfred Jensen)
NIEM’s model makes no difference between data and information (Alfred Jensen)

For that purpose NIEM’s model combines commonly agreed core elements with community-specific ones. Weighted against the benefits of simplicity, this architecture overlooks critical distinctions:

  • Inputs: Data vs Information
  • Dictionary: Lexicon and Thesaurus
  • Meanings: Lexical Items and Semantics
  • Usage: Roots and Aspects

That shallow understanding of information significantly hinders the exchange of information between business or institutional entities across overlapping domains.

Inputs: Data vs Information

Data is made of unprocessed observations, information makes sense of data, and knowledge makes use of information. Given that NIEM is meant to be an exchange between business or institutional users, it should have no concern with data mining or knowledge management.

Data is meaningless, information meaning is set by semantic domains.
As an exchange, NIEM should have no concern with data mining or knowledge management.

The problem is that, as conveyed by “core of data elements that are commonly understood and defined across domains, such as person, activity, document, location”, NIEM’s model makes no explicit distinction between data and information.

As a corollary, it implies that data may not only be meaningful, but universally so, which leads to a critical trap: as substantiated by data analytics, data is not supposed to mean anything before processed into information; to keep with examples, even if the definition of persons and locations may not be specific, the semantics of associated information is nonetheless set by domains, institutional, regulatory, contractual, or otherwise.

Data is meaningless, information meaning is set by semantic domains.
Data is meaningless, information meaning is set by semantic domains.

Not surprisingly, that medley of data and information is mirrored by NIEM’s dictionary.

Dictionary: Lexicon & Thesaurus

As far as languages are concerned, words (e.g “word”, “ξ∏¥” ,”01100″) remain data items until associated to some meaning. For that reason dictionaries are built on different levels, first among them lexical and semantic ones:

  • Lexicons take items on their words and gives each of them a self-contained meaning.
  • Thesauruses position meanings within overlapping galaxies of understandings held together by the semantic equivalent of gravitational forces; the meaning of words can then be weighted by the combined semantic gravity of neighbors.

In line with its shallow understanding of information, NIEM’s dictionary only caters for a lexicon of core standalone items associated with type descriptions to be directly implemented by information systems. But due to the absence of thesaurus, the dictionary cannot tackle the semantics of overlapping domains: if lexicons alone can deal with one-to-one mappings of items to meanings (a), thesauruses are necessary for shared (b) or alternative (c) mappings.

vv
Shared or alternative meanings cannot be managed with lexicons

With regard to shared mappings (b), distinct lexical items (e.g qualification) have to be mapped to the same entity (e.g person). Whereas some shared features (e.g person’s birth date) can be unequivocally understood across domains, most are set through shared (professional qualification), institutional (university diploma), or specific (enterprise course) domains .

Conversely, alternative mappings (c) arise when the same lexical items (e.g “mole”) can be interpreted differently depending on context (e.g plastic surgeon, farmer, or secret service).

Whereas lexicons may be sufficient for the use of lexical items across domains (namespaces in NIEM parlance), thesauruses are necessary if meanings (as opposed to uses) are to be set across domains. But thesauruses being just tools are not sufficient by themselves to deal with overlapping semantics. That can only be achieved through a conceptual distinction between lexical and semantic envelops.

Meanings: Lexical Items & Semantics

NIEM’s dictionary organize names depending on namespaces and relationships:

  • Namespaces: core (e.g Person) or specific (e.g Subject/Justice).
  • Relationships: types (Counselor/Person) or properties (e.g PersonBirthDate).
vvv
NIEM’s Lexicon: Core (a) and specific (b) and associated core (c) and specific (d) properties

But since lexicons know only names, the organization is not orthogonal, with lexical items mapped indifferently to types and properties. The result being that, deprived of reasoned guidelines, lexical items are chartered arbitrarily, e.g:

Based on core PersonType, the Justice namespace uses three different schemes to define similar lexical items:

  • “Counselor” is described with core PersonType.
  • “Subject” and “Suspect” are both described with specific SubjectType, itself a sub-type of PersonType.
  • “Arrestee” is described with specific ArresteeType, itself a sub-type of SubjectType.

Based on core EntityType:

  • The Human Services namespace bypasses core’s namesake and introduces instead its own specific EmployerType.
  • The Biometrics namespace bypasses possibly overlapping core Measurer and BinaryCaptured and directly uses core EntityType.
Lexical items are meshed disregarding semantics
Lexical items are chartered arbitrarily

Lest expanding lexical items clutter up dictionary semantics, some rules have to be introduced; yet, as noted above, these rules should be limited to information exchange and stop short of knowledge management.

Usage: Roots and Aspects

As far as information exchange is concerned, dictionaries have to deal with lexical and semantic meanings without encroaching on ontologies or knowledge representation. In practice that can be best achieved with dictionaries organized around roots and aspects:

  • Roots and structures (regular, black triangles) are used to anchor information units to business environments, source or destination.
  • Aspects (italics, white triangles) are used to describe how information units are understood and used within business environments.
nformation exchanges are best supported by dictionaries organized around roots and aspects
Information exchanges are best supported by dictionaries organized around roots and aspects

As it happens that distinction can be neatly mapped to core concepts of software engineering.

P.S. Thesauruses & Ontologies

Ontologies are systematic accounts of existence for whatever is considered, in other words some explicit specification of the concepts meant to make sense of a universe of discourse. From that starting point three basic observations can be made:

  1. Ontologies are made of categories of things, beings, or phenomena; as such they may range from simple catalogs to philosophical doctrines.
  2. Ontologies are driven by cognitive (i.e non empirical) purposes, namely the validity and consistency of symbolic representations.
  3. Ontologies are meant to be directed at specific domains of concerns, whatever they can be: politics, religion, business, astrology, etc.

With regard to models, only the second one puts ontologies apart: contrary to models, ontologies are about understanding and are not supposed to be driven by empirical purposes.

On that basis, ontologies can be understood as thesauruses describing galaxies of concepts (stars) and features (planets) held together by semantic gravitation weighted by similarity or proximity. As such ontologies should be NIEM’s tool of choice.

Further Reading

External Links