EA in the Loops

Enterprise Architects are to jump across loops (Bruce Beasley)

When push comes to shove, deciding on a development process is to decide between instant or delayed returns, namely focusing on users needs with agile development, or taking extended features into consideration and weighting the benefits of reuse against additional costs, e.g.:

  • Designs to be reused as patterns.
  • Profiling configurations.
  • Structuring business process models so that they could be designed as business functions.
  • Formatting business logic for automated code generation.

The intricacies of stakes and decision-making processes can be set forth by applying the Observation-Orientation-Decision-Action (OODA) loop to the four views of changes: enterprise, business domains, business applications, systems:

At enterprise level the loops are triggered by changes in business environments pertaining to business model and objectives. They are supposed to affect different business domains.

  1. Observations: Business opportunities
  2. Orientation: Assessment of business opportunities with regard to business objectives.
  3. Decision: Committing resources to changes in organization and processes
  4. Action: Achieving changes in organization and processes

Changes initiated from business domains can be derived from enterprise level or the result of more specific objectives. They are supposed to affect different applications.

  1. Observations: Business analysis
  2. Orientation: Functional feasibility and assessment of transformation benefits.
  3. Decision: Committing changes in functional architecture.
  4. Action: Development, integration, tests

Changes at application level are initiated by organizational units, business or otherwise. They are supposed to be self-contained.

  1. Observations: Users requirements
  2. Orientation: Engineering feasibility and assessment of development options.
  3. Decision: Choice of a development model.
  4. Action: Development, integration, tests

Changes at system level are initiated by organizational units, including business ones (quality of service). They are supposed to affect different applications.

  1. Observations: Process mining and operational requirements
  2. Orientation: Operational feasibility and assessment of configurations.
  3. Decision: Development model.
  4. Action: Deployment and acceptance.

Given that sizeable companies with differentiated organization and business have to manage these different threads continuously and consistently, old fashioned imperative processes can only lead to paralysis. Hence the need of a declarative approach to EA workflows.

FURTHER READING

Strategies: Augmented vs Virtual Realities

Preamble

The immersion of enterprises into digital environments and the merging of business and engineering processes are bound to impact traditional approaches to strategic planning.

Outlines & Time-frames (Annette Messager)

A detour into virtual and augmented reality may help to understand how the digital transformation is to affect the ways actual and future circumstances can be assessed and acted upon.

HORIZONS, Spaces, TIME

Strategic planning can be summarily defined as the alignment of two kinds of horizons:

  • External horizons are set on markets, competition, and technologies, with views and anticipations coming through data analytics and game theory.
  • Internal horizons are set on enterprise architectures, with business models and policies on one hand, organization and systems on the other. Both are set on purposes, the former aiming at specificity and edge, the latter at sharing and stability.

How to manage the alignment of controlled enterprise horizons with anticipated external ones

As far as the strategic alignment of means (internal horizons) and ends (external horizons) are concerned, time is of the essence; that’s where is the fault line: whatever enterprise planned time-frames, they can only be mapped to fuzzy or unreliable ones outside. As a corollary, alignments have to be carried out either as a continuum, or through discrete and periodic adjustments to predictive models.

The future begins now

As suggested by Lewis Carroll’s Red Queen, the survival of enterprises in their evolutionary arms race doesn’t depend on their absolute speed set against some universal time-frame but on the relative one set by markets and competitors. Taking into account the role of a reliable and up-to-date basis for decision-making, strategic schemes can be characterized in terms of virtual and augmented reality:

  • Strategies set along predefined time-frames are by construct loosely tied to business environments since discrepancies are bound to develop during the intervals between anticipations (virtual reality) and realizations (actual reality). Hence the need of overall and planned adjustments.
  • By contrast, strategies set dynamically through OODA (observations, orientation, decision, action) loops can be carried out without overall anticipations; like augmented reality (AR) they mix fine-grained data observations and business intelligence with additional layers of information deemed to be relevant.
Seamless integration of operational analytics, business intelligence, and decision-making.
A seamless integration of OODA & Economic Intelligence

The first category has for long been a cornerstone of established strategic planning, with its implicit assumption of a conceptual gap between ‘Here and Now’ and future visions. But the induced latencies and discrepancies may become liabilities if enterprises have to continuously adjust representations and policies.

From Governance DIZZINESS to Strategic Missteps

As self-conscious organisms immersed into competitive environments enterprises survival depends on their awareness of changes.

For mammals such awareness is a biological capability: any discrepancy between perceived movements and their counterpart in the vestibular system is to generate motion sickness or vertigo.

Enterprises have no such built-in mechanism yet their awareness is nonetheless contingent on the alignment of representations with observations and orientations. As a corollary, out-of-kilter time-frames and outdated schemes may remain unnoticed, introducing governance dizziness and strategic missteps.

Obsolete representations (grey) are bound to generate dizziness and missteps

Such drawbacks can be limited with decision-making set along differentiated time-frames, e.g:

  • Operational decisions, to be carried out within processes time-frame (a).
  • Architecture decisions, for changes in assets affecting the design of business processes and supporting platforms (b).
  • Organizational decisions, for changes affecting roles and processes (c).
Weaving fine-grained threads across enterprise architectures and consistent time-frames.

That would allow the weaving of fine-grained policies across enterprise architectures and along consistent time-frames, mixing actual observations, representations of current and planned assets and resources, and anticipations of markets changes a competitors moves.

On that basis strategic alignments would not have to be set at fixed time for overall models, but could be managed continuously, with decision-making finely tuned for targets and timing:

  • External horizons: business decisions could be balanced by the need to know with the reliability of available information.
  • Internal horizons: decisions about organization and systems could be taken at the “last responsible moment”, i.e until not taking side could change the possible options.

Strategic planning could then be defined by crossing these rationales at the relevant granularity.

FURTHER READING


Digital Strategy

Preamble

The digital transformation induces fundamental changes for the exchanges between enterprises and their environment.

To begin with, their immersion into digital environments means that the traditional fences surrounding their IT systems are losing their relevance, being bypassed by massive data flows to be processed without delay.

Then, the induced osmosis upturns the competition playground and compels drastic changes in governance: less they fall behind, enterprises have to redefine their organization, systems, and processes.

Strategies are meant to draw passageways between current circumstances and conjectured horizons (Kader Attia)

New playground

Strategic thinking is first and foremost making differences with regard to markets, resources and assets, and time-frames. But what makes the digital revolution so disruptive is that it resets the ways differences are made:

  • Markets: the traditional distinctions between products and services are all but forgotten.
  • Resources and assets: with software, smart or otherwise, now tightly mixed in products fabric, and business processes now driven by knowledge, intangible assets are taking the lead on conventional ones.
  • Time-frames: strategies have for long been defined as a combination of anticipations, objectives and policies whose scope extends beyond managed horizons. But digital osmosis and the ironing out of markets and assets traditional boundaries are dissolving the milestones used to draw horizons perspectives.

New perspectives

To overcome these challenges enterprises strategies should focus on four pillars:

  • Governance: the immersion of enterprises in digital environments and the crumbling of traditional fences require in-depth changes in the assessment of enterprises capability and maturity, putting the focus on the ability to change.
  • Data and Information: massive and continuous inflows of data calls for a seamless integration of data analytics (perception), information models (reasoning), and knowledge (decision-making).
  • Security & Confidentiality: new regulatory environments and costs of privacy breaches call for a clear distinction between data tied to identified individuals and information associated to designed categories.
  • Innovation: digital environments induce a new order of magnitude for the pace of technological change. Making opportunities from changes can only be achieved through collaboration mechanisms harnessing enterprise knowledge management to environments intakes.

FURTHER READING

Focus: Data vs Information

Preamble

Distinctions must serve a purpose and be assessed accordingly. On that account, what would be the point of setting apart data and information, and on what basis could that be done.


From Data Stripes to Information Structure (Victor Vasarely)

Until recently the two terms seem to have been used indifferently; until, that is, the digital revolution. But the generalization of digital surroundings and the tumbling down of traditional barriers surrounding enterprises have upturned the playground as well as the rules of the game.

Previously, with data analytics, information modeling, and knowledge management mostly carried out as separate threads, there wasn’t much concerns about semantic overlaps; no more. Lest they fall behind, enterprises have to combine observation (data), reasoning (information), and judgment (knowledge) as a continuous process. But such integration implies in return more transparency and traceability with regard to resources (e.g external or internal) and objectives (e.g operational or strategic); that’s when a distinction between data and information becomes necessary.

Economics: Resources vs Assets

Understood as a whole or separately, there is little doubt that data and information have become a key success factor, calling for more selective and effective management schemes.

Being immersed in digital environments, enterprises first depend on accurate, reliable, and timely observations of their business surroundings. But in the new digital world the flows of data are so massive and so transient that mining meaningful and reliable pieces is by itself a decisive success factor. Next, assuming data flows duly processed, part of the outcome has to be consolidated into models, to be managed on a persistent basis (e.g customer records or banking transactions), the rest being put on temporary shelves for customary uses, or immediately thrown away (e.g personal data subject to privacy regulations). Such a transition constitutes a pivotal inflexion point for systems architectures and governance as it sorts out data resources with limited lifespan from information assets with strategic relevance. Not to mention the sensibility of regulatory compliance to data management.

Processes: Operations vs Intelligence

Making sense of data is pointless without putting the resulting information to use, which in digital environments implies a tight integration of data and information processing. Yet, as already noted, tighter integration of processes calls for greater traceability and transparency, in particular with regard to the origin and scope: external (enterprise business and organization) or internal (systems). The purposes of data and information processing can be squared accordingly:

  • The top left corner is where business models and strategies are meant to be defined.
  • The top right corner corresponds to traditional data or information models derived from business objectives, organization, and requirement analysis.
  • The bottom line correspond to analytic models for business (left) and operations (right).

Squaring the purposes of Data & Information Processing

That view illustrates the shift of paradigm induced by the digital transformation. Prior, most mappings would be set along straight lines:

  • Horizontally (same nature), e.g requirement analysis (a) or configuration management (b). With source and destination at the same level, the terms employed (data or information) have no practical consequence.
  • Vertically (same scope), e.g systems logical to physical models (c) or business intelligence (d). With source and destination set in the same semantic context the distinction (data or information) can be ignored.

The digital transformation makes room for diagonal transitions set across heterogeneous targets, e.g mapping data analytics with conceptual or logical models (e).

That double mix of levels and scopes constitutes the nexus of decision-making processes; their transparency is contingent on a conceptual distinction between data and information.

At operational level the benefits of the distinction are best expressed through what is commonly known as the OODA (Observation, Orientation, Decision, Action) loop:

  • Data is used to align operations (systems) with observations (territories).
  • Information is used to align categories (maps) with objectives.

Roles of Data (red) & Information (blue) in integrated decision-making processes

Then, the conceptual distinction between data and information is instrumental for the integration of operational and strategic decision-making processes:

  • Data analytics feeding business intelligence
  • Information modeling supporting operational assessment.

Not by chance, these distinctions can be aligned with architecture layers.

Architectures: Instances vs Categories

Blending data with information overlooks a difference of nature, the former being associated with actual instances (external observation or systems operations), the latter with symbolic descriptions (categories or types). That intrinsic difference can be aligned with architecture layers (resources are consumed, assets are managed), and decision-making processes (operations deal with instances, strategies with categories).

With regard to architectures, the relationship between instances (data) and categories (information) can be neatly aligned with capability layers, as represented by the Pagoda blueprint:

  • The platform layer deals with data reflecting observations (external facts) and actions (system operations).
  • The functional layer deals with information, i.e the symbolic representation of business and organization categories.
  • The business and organization layer defines the business and organization categories.

It must also be noted that setting apart what pertains to individual data independently of the information managed by systems clearly props up compliance with privacy regulations.


Architectures & Decision-making

With regard to decision-making processes, business intelligence uses the distinction to integrate levels, from operations to strategic planning, the former dealing with observations and operations (data), the latter with concepts and categories (information and knowledge).

Representations: Knowledge Architecture

As noted above, the distinction between data and information is a necessary counterpart of the integration of operational and intelligence processes; that implies in return to bring data, information, and knowledge under a common conceptual roof, respectively as resources, assets, and service:

  1. Resources: data is captured through continuous and heterogeneous flows from a wide range of sources.
  2. Assets: information is built by adding identity, structure, and semantics to data.
  3. Services: knowledge is information put to use through decision-making.

Ontologies, which are meant to encompass all and every kind of knowledge, are ideally suited for the management of whatever pertains to enterprise architecture, thesaurus, models, heuristics, etc.

CaKe_DataInfoKnow

That approach has been tested with the Caminao ontological kernel using OWL2; a beta version is available for comments on the Stanford/Protégé portal with the link: Caminao Ontological Kernel (CaKe_).

Conclusion: From Metadata to Machine Learning

The significance of the distinction between data and information shows up at the two ends of the spectrum:

On one hand, it straightens the meaning of metadata, to be understood as attributes of observations independently of semantics, a dimension that plays a critical role in machine learning.

On the other hand, enshrining the distinction between what can be known of individuals facts or phenomena and what can be abstracted into categories is to enable an open and dynamic knowledge management, also a critical requisite for machine learning.

FURTHER READING

External Links

Squared Outline: Events

In line with the Symbolic Systems paradigm, events are best understood in terms of interactions between systems (or enterprises) and the environment they represent (or live off).

Events with regard to nature and coupling

On that account events are to be associated with four kinds of notifications:

  1. Actual (aka non symbolic) changes in the state of objects.
  2. Actual (aka non symbolic) changes in the state of activities.
  3. Changes in the state of expectations (e.g requests/acknowledgments).
  4. Neutral changes in symbolic representations (e.g messages).

It must be noted that while synchronization constraints (e.g UML’s calls vs signals) characterize events’ communication semantics, they say nothing about events themselves.

That distinction is of a particular importance for the definition of time as a
change in a dedicated physical device, ensuring that, according to Einstein, events don’t happen at once.

FURTHER READINGS

Squared Outline: Ontologies

The upsurge in the scope and performances of artificial brains sometimes brings a new light on human cognition. Semantic layers and knowledge graphs offer a good example of a return to classics, in that case with Greek philosophers’ ontologies.

According to their philosophical origins, ontologies are systematic accounts of existence for whatever can make sense in an universe of discourse. From that starting point four basic observations can be made:

  1. Ontologies are structured set of names denoting symbolic (aka cognitive) representations.
  2. These representations can stand at different epistemic levels: terms or labels associated to representations (nothing is represented), ideas or concepts (sets of terms), instances of identified objects or phenomena, categories (sets of instances), documents.
  3. Ontologies are solely dedicated to the validity and internal consistency of the representations. Not being concerned with external validity, As they are not meant to support empirical purposes.
  4. Yet, assuming a distinction between epistemic levels, ontologies can be used to support both internal and external consistency of models. 

That makes models a refinement of ontologies as they are meant to be externally consistent and serve a purpose.

FURTHER READING

EXTERNAL LINKS

Boost Your Mind Mapping

Preamble

Turning thoughts into figures faces the intrinsic constraint of dimension: two dimensional representations cannot cope with complexity.

van der Straet, Jan, 1523-1605; A Natural Philosopher in His Study
Making his mind about knowledge dimensions: actual world, descriptions, and reproductions (Jan van der Straet)

So, lest they be limited to flat and shallow thinking, mind cartographers have to introduce the cognitive equivalent of geographical layers (nature, demography, communications, economy,…), and archetypes (mountains, rivers, cities, monuments, …)

Nodes: What’s The Map About

Nodes in maps (aka roots, handles, …) are meant to anchor thinking threads. Given that human thinking is based on the processing of symbolic representations, mind mapping is expected to progress wide and deep into the nature of nodes: concepts, topics, actual objects and phenomena, artifacts, partitions, or just terms.

Mindmap00
What’s The Map About

It must be noted that these archetypes are introduced to characterize symbolic representations independently of domain semantics.

Connectors: Cognitive Primitives

Nodes in maps can then be connected as children or siblings, the implicit distinction being some kind of refinement for the former, some kind of equivalence for the latter. While such a semantic latitude is clearly a key factor of creativity, it is also behind the poor scaling of maps with complexity.

A way to frame complexity without thwarting creativity would be to define connectors with regard to cognitive primitives, independently of nodes’ semantics:

  • References connect nodes as terms.
  • Associations: connect nodes with regard to their structural, functional, or temporal proximity.
  • Analogies: connect nodes with regard to their structural or functional similarities.

At first, with shallow nodes defined as terms, connections can remain generic; then, with deeper semantic levels introduced, connectors could be refined accordingly for concepts, documentation, actual objects and phenomena, artifacts,…

Mindmap11
Connectors are aligned with basic cognitive mechanisms of metonymy (associations) and analogy (similarities)

Semantics: Extensional vs Intensional

Given mapping primitives defined independently of domains semantics, the next step is to take into account mapping purposes:

  • Extensional semantics deal with categories of actual instances of objects or phenomena.
  • Intensional semantics deal with specifications of objects or phenomena.

That distinction can be applied to basic semantic archetypes (people, roles, events, …) and used to distinguish actual contexts, symbolic representations, and specifications, e.g:

Mindmap20xi
Extensions (full border) are about categories of instances, intensions (dashed border) are about specifications
  • Car (object) refers to context, not to be confused with Car (surrogate) which specified the symbolic counterpart: the former is extensional (actual instances), the latter intensional (symbolic representations)
  • Maintenance Process is extensional (identified phenomena), Operation is intensional (specifications).
  • Reservation and Driver are symbolic representations (intensional), Person is extensional (identified instances).

It must be reminded that whereas the choice is discretionary and contingent on semantic contexts and modeling purposes (‘as-it-is’ vs ‘as-it-should-be’), consequences are not because the choice is to determine abstraction semantics.

For example, the records for cars, drivers, and reservations are deemed intensional because they are defined by business concerns. Alternatively, instances of persons and companies are defined by contexts and therefore dealt with as extensional descriptions.

Abstractions: Subsets & Sub-types

Thinking can be characterized as a balancing act between making distinctions and managing the ensuing complexity. To that end, human edge over other animal species is the use of symbolic representations for specialization and generalization.

That critical mechanism of human thinking is often overlooked by mind maps due to a confused understanding of inheritance semantics:

  • Strong inheritance deals with instances: specialization define subsets and generalization is defined by shared structures and identities.
  • Weak inheritance deals with specifications: specialization define sub-types and generalization is defined by shared features.
Mindmap30
Inheritance semantics: shared structures (dark) vs shared features (white)

The combination of nodes (intension/extension) and inheritance (structures/features) semantics gives cartographers two hands: a free one for creative distinctions, and a safe one for the ensuing complexity. e.g:

  • Intension and weak inheritance: environments (extension) are partitioned according to regulatory constraints (intension); specialization deals with subtypes and generalization is defined by shared features.
  • Extension and strong inheritance: cars (extension) are grouped according to motorization; specialization deals with subsets and generalization is defined by shared structures and identities.
  • Intension and strong inheritance: corporate sub-type inherits the identification features of type Reservation (intension).

Mind maps built on these principles could provide a common thesaurus encompassing the whole of enterprise data, information and knowledge.

Intelligence: Data, Information, Knowledge

Considering that mind maps combine intelligence and cartography, they may have some use for enterprise architects, in particular with regard to economic intelligence, i.e the integration of information processing, from data mining to knowledge management and decision-making:

  • Data provide the raw input, without clear structures or semantics (terms or aspects).
  • Categories are used to process data into information on one hand (extensional nodes), design production systems on the other hand (intensional nodes).
  • Abstractions (concepts) makes knowledge from information by putting it to use.

Conclusion

Along that perspective mind maps could serve as front-ends for enterprise architecture ontologies, offering a layered cartography that could be organized according to concerns:

Enterprise architects would look at physical environments, business processes, and functional and technical systems architectures.

mups_Layers
Using layered maps to visualize enterprise architectures

Knowledge managers would take a different perspective and organize the maps according to the nature and source of data, information, and knowledge.intelligence w

mups_Ontos
Using layered maps to build economic intelligence

As demonstrated by geographic information systems, maps built on clear semantics can be combined to serve a wide range of purposes; furthering the analogy with geolocation assistants, layered mind maps could be annotated with punctuation marks (e.g ?, !, …) in order to support problem-solving and decision-making.

Further Reading

External Links