EA & The Pagoda Blueprint

“The little reed, bending to the force of the wind, soon stood upright again when the storm had passed over”

Aesop

Resilience and adaptability to changing environments (Masao Ido)

Preamble

The consequences of digital environments go well beyond a simple adjustment of business processes and call for an in-depth transformation of enterprise architectures. 

To begin with, the generalization of digital environments bears out the Symbolic System modeling paradigm: to stay competitive, enterprises have to manage a relevant, accurate, and up-to-date symbolic representation of their business context and concerns. 

With regard to architectures, it means a seamless integration of systems and knowledge architectures.

With regard to processes it means a built-in ability to learn from environments and act accordingly.

Such requirements for resilience and adaptability in unsettled environments are characteristic of the Pagoda architecture blueprint.

Pagoda Blueprint

As can be observed wherever high buildings are being erected on shaking grounds, Pagoda-like architectures set successive layers around a central pillar providing intrinsic strength and resilience to external upsets while allowing the floors to move with the whole or be modified independently. Applied to enterprise architectures in digital environments, that blueprint can be much more than metaphoric.

The actual relevance of the pagoda blueprint is best understood when the main of data, information, and knowledge is set across platforms, systems, and organization layers:


The Pagoda Architecture Blueprint is derived from the Zachman’s frameworks

That blueprint puts a new light on model based approaches to systems engineering (MBSE):

  • Conceptual models, targeting enterprises organization and business independently of supporting systems.
  • Logical models, targeting the symbolic objects managed by supporting systems as surrogates of business objects and activities.
  • Physical models, targeting the actual implementation of symbolic surrogates as binary objects.

Pagoda Blueprint & Digital Environments

The Pagoda blueprint gets a new relevance in the context of digital transformation.

Moreover, the blueprint is not limited to enterprise architectures and can be applied to every kind of systems:

  • Devices associated to physical platforms supporting analog communication through the Internet of Things (a).
  • Equipements associated to physical platforms controlled by systems, supporting digital communication (b) and functional alignment (c) .
Beside enterprise architectures, the Pagoda Blueprint can be applied to equipments, systems or devices.

That would greatly enhance the traceability and transparency of transformations induced by the immersion of enterprises in digital environments.

Systems & Knowledge Architectures

If digitized business flows are to pervade enterprise systems and feed business intelligence (BI), systems and knowledge architectures are to be merged into a single nervous system as materialized by the Pagoda central pillar:

Business Intelligence and Decision-making
  • Ubiquitous, massive, and unrelenting digitized business flows cannot be dealt with lest a clear distinction is maintained between raw data acquired across platforms, and the information (previously data) models which ensure the continuity and consistency of systems.  .  
  • Once structured and refined, business data flows must be blended with information models sustaining systems functionalities.
  • A comprehensive and business driven integration of organization and knowledge could then support strategic and operational decision-making at enterprise level.

Rounding off this nervous system with a brain, ontologies would provide the conceptual frame for models representing enterprises and their environments.

Agile Architectures & Homeostasis

Homeostasis is the ability of a viable organism to learn from their environment and adapt their behavior and structures according to changes.
As such homeostasis can be understood as the eextension of enterprise agility set in digital environments, ensuring:

  • Integrated decision-making processes across concerns (business, systems, platforms), and time-frames (tactical, operational, strategic, … ).
  • Integrated information processing, from data-mining to knowledge management.

To that end, changes should be differentiated with regard to source (business or technology environment, organization, systems) and flows (data, information, knowledge); that would be achieved with a pagoda blueprint.

Resilience and adaptability to changes

Threads of operational and strategic decision-making processes could then be weaved together, combining OODA loops at process level and economic intelligence at enterprise level.

Further Reading

Squared Outline: Layers

The immersion of enterprises into digital environments is blurring the traditional distinctions between architecture layers. Hence the need of clarifying the basic notions.


The Pagoda Architecture Blueprint is derived from the Zachman’s frameworks

Beyond the differences in terminologies (layers, levels, tiers, etc), four basic taxonomies can be applied:

  1. Enterprise architecture: business processes and organization, systems, platforms (Pagoda blueprint).
  2. Functional architecture: interfaces, control, persistency, services (Model/View/Controller).
  3. Representation: physical, logical, conceptual (Pagoda blueprint).
  4. Economic intelligence: data, information, knowledge

While some alignments are intrinsic, making explicit use of taxonomies is useful because they serve specific purposes.

n.b. The term “application layer” is usually defined in the context of communication architectures.

Further Reading

Collaborative Systems Engineering: From Models to Ontologies

Given the digitization of enterprises environments, engineering processes have to be entwined with business ones while kept in sync with enterprise architectures. That calls for new threads of collaboration taking into account the integration of business and engineering processes as well as the extension to business environments.

Wang-Qingsong_scaffold
Collaboration can be personal and direct, or collective and mediated (Wang Qingsong)

Whereas models are meant to support communication, traditional approaches are already straining when used beyond software generation, that is collaboration between humans and CASE tools. Ontologies, which can be seen as a higher form of models, could enable a qualitative leap for systems collaborative engineering at enterprise level.

Systems Engineering: Contexts & Concerns

To begin with contents, collaborations should be defined along three axes:

  1. Requirements: business objectives, enterprise organization, and processes, with regard to systems functionalities.
  2. Feasibility: business requirements with regard to architectures capabilities.
  3. Architectures: supporting functionalities with regard to architecture capabilities.

RekReuse_BFCo
Engineering Collaborations at Enterprise Level

Since these axes are usually governed by different organizational structures and set along different time-frames, collaborations must be supported by documentation, especially models.

Shared Models

In order to support collaborations across organizational units and time-frames, models have to bring together perspectives which are by nature orthogonal:

  • Contexts, concerns, and languages: business vs engineering.
  • Time-frames and life-cycle: business opportunities vs architecture stability.

EASquare2_eam.jpg
Harnessing MBSE to EA

That could be achieved if engineering models could be harnessed to enterprise ones for contexts and concerns. That is to be achieved through the integration of processes.

 Processes Integration

As already noted, the integration of business and engineering processes is becoming a key success factor.

Processes integration

For that purpose collaborations would have to take into account the different time-frames governing changes in business processes (driven by business value) and engineering ones (governed by assets life-cycles):

  • Business requirements engineering is synchronic: changes must be kept in line with architectures capabilities (full line).
  • Software engineering is diachronic: developments can be carried out along their own time-frame (dashed line).

EASq2_wrkflw
Synchronic (full) vs diachronic (dashed) processes.

Application-driven projects usually focus on users’ value and just-in-time delivery; that can be best achieved with personal collaboration within teams. Architecture-driven projects usually affect assets and non-functional features and therefore collaboration between organizational units.

Collaboration: Direct or Mediated

Collaboration can be achieved directly or through some mediation, the former being a default option for applications, the latter a necessary one for architectures.

Cycles_collabs00

Both can be defined according to basic cognitive and organizational mechanisms and supported by a mix of physical and virtual spaces to be dynamically redefined depending on activities, projects, locations, and organisation.

Direct collaborations are carried out between individuals with or without documentation:

  • Immediate and personal: direct collaboration between 5 to 15 participants with shared objectives and responsibilities. That would correspond to agile project teams (a).
  • Delayed and personal: direct collaboration across teams with shared knowledge but with different objectives and responsibilities. That would tally with social networks circles (c).

Cycles_collabs.jpg
Collaborations

Mediated collaborations are carried out between organizational units through unspecified individual members, hence the need of documentation, models or otherwise:

  • Direct and Code generation from platform or domain specific models (b).
  • Model transformation across architecture layers and business domains (d)

Depending on scope and mediation, three basic types of collaboration can be defined for applications, architecture, and business intelligence projects.

EASq2_collabs
Projects & Collaborations

As it happens, collaboration archetypes can be associated with these profiles.

Collaboration Mechanisms

Agile development model (under various guises) is the option of choice whenever shared ownership and continuous delivery are possible. Application projects can so be carried out autonomously, with collaborations circumscribed to team members and relying on the backlog mechanism.

The OODA (Observation, Orientation, Decision, Action) loop (and avatars) can epitomize projects combining operations, data analytics, and decision-making.

EASquare2_collaMechas
Collaboration archetypes

Projects set across enterprise architectures cannot be carried out without taking into account phasing constraints. While ill-fated Waterfall methods have demonstrated the pitfalls of procedural solutions, phasing constraints can be dealt with a roundabout mechanism combining iterative and declarative schemes.

Engineering vs Business Driven Collaborations

With collaborative engineering upgraded at enterprise level, the main challenge is to iron out frictions between application and architecture projects and ensure the continuity, consistency and effectiveness of enterprise activities. That can be achieved with roundabouts used as a collaboration mechanism between projects, whatever their nature:

  • Shared models are managed at roundabout level.
  • Phasing dependencies are set in terms of assertions on shared models.
  • Depending on constraints projects are carried out directly (1,3) or enter roundabouts (2), with exits conditioned by the availability of models.

Engineering driven collaboration: roundabout and backlogs

Moreover, with engineering embedded in business processes, collaborations must also bring together operational analytics, decision-making, and business intelligence. Here again, shared models are to play a critical role:

  • Enterprise descriptive and prescriptive models for information maps and objectives
  • Environment predictive models for data and business understanding.

OKBI_BIDM
Business driven collaboration: operations and business intelligence

Whereas both engineering and business driven collaborations depend on sharing information  and knowledge, the latter have to deal with open and heterogeneous semantics. As a consequence, collaborations must be supported by shared representations and proficient communication languages.

Ontologies & Representations

Ontologies are best understood as models’ backbones, to be fleshed out or detailed according to context and objectives, e.g:

  • Thesaurus, with a focus on terms and documents.
  • Systems modeling,  with a focus on integration, e.g Zachman Framework.
  • Classifications, with a focus on range, e.g Dewey Decimal System.
  • Meta-models, with a focus on model based engineering, e.g models transformation.
  • Conceptual models, with a focus on understanding, e.g legislation.
  • Knowledge management, with a focus on reasoning, e.g semantic web.

As such they can provide the pillars supporting the representation of the whole range of enterprise concerns:

KM_OntosCapabs

Taking a leaf from Zachman’s matrix, ontologies can also be used to differentiate concerns with regard to architecture layers: enterprise, systems, platforms.

Last but not least, ontologies can be profiled with regard to the nature of external contexts, e.g:

  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to established procedures.
  • Corporate: Defined by enterprises, changes subject to internal decision-making.
  • Social: Defined by usage, volatile, continuous and informal changes.
  • Personal: Customary, defined by named individuals (e.g research paper).

Cross profiles: capabilities, enterprise architectures, and contexts.

Ontologies & Communication

If collaborations have to cover engineering as well as business descriptions, communication channels and interfaces will have to combine the homogeneous and well-defined syntax and semantics of the former with the heterogeneous and ambiguous ones of the latter.

With ontologies represented as RDF (Resource Description Framework) graphs, the first step would be to sort out truth-preserving syntax (applied independently of domains) from domain specific semantics.

KM_CaseRaw
RDF graphs (top) support formal (bottom left) and domain specific (bottom right) semantics.

On that basis it would be possible to separate representation syntax from contents semantics, and to design communication channels and interfaces accordingly.

That would greatly facilitate collaborations across externally defined ontologies as well as their mapping to enterprise architecture models.

Conclusion

To summarize, the benefits of ontological frames for collaborative engineering can be articulated around four points:

  1. A clear-cut distinction between representation semantics and truth-preserving syntax.
  2. A common functional architecture for all users interfaces, humans or otherwise.
  3. Modular functionalities for specific semantics on one hand, generic truth-preserving and cognitive operations on the other hand.
  4. Profiled ontologies according to concerns and contexts.

KM_OntosCollabs
Clear-cut distinction (1), unified interfaces architecture (2), functional alignment (3), crossed profiles (4).

A critical fifth benefit could be added with regard to business intelligence: combined with deep learning capabilities, ontologies would extend the scope of collaboration to explicit as well as implicit knowledge, the former already framed by languages, the latter still open to interpretation and discovery.

P.S.

Knowledge graphs, which have become a key component of knowlege management, are best understood as a reincarnation of ontologies.

Further Reading

 

On The Holistic Nature of MBSE

Preamble

Interestingly, variants of MBSE/MDSE acronyms put the focus on the duality of the concept, software on one side, systems on the other.

MBSE is by nature a two-faced endeavor (Sand Painting Navajo Rug)

As that duality operates for models, systems, and organizations, MBSE offers a holistic view on enterprise architecture.

Models and Software

Models are symbolic representations of actual contexts in line with specific purposes: requirements analysis, simulation, software design, etc. Software is a subset of models characterized by target (computer code) and language (executable instructions). Based on that understanding, MBSE should not be limited to DSLs silos and code generation but employed to bring together and manage the whole range of concerns and artifacts.

Systems and Applications

The hapless track record of Waterfall and the parallel ascent of Agile have clouded the grounds for phased development processes. But whereas agile schemes are the default option when applications can be developed independently, external dependencies prevent their scaling up to system level. That’s when system engineering takes precedence on applications development, with MBSE introduced to manage shared models and support collaboration between teams.

Organization and Projects

As epitomized by agile development models, projects can be driven by specific business needs or shared architecture capabilities. Whereas the former are best carried out iteratively by autonomous teams sharing skills and responsibility, the latter entail collaboration between organizational units along time. MBSE provides the link between standalone projects, phased processes, and enterprise organization.

MBSE provides a holistic view of organisations and systems.

By providing a holistic view of changes in organizations, systems, and software, MBSE should be a key component of enterprise architecture.

Further Reading

Views, Models, & Architectures

Preamble

Views can take different meanings, from windows opening on specific data contexts (e.g DB relational theory), to assortments of diagrams dedicated to particular concerns (e.g UML).

Fortunato Depero tunnels
Deconstructing the Universe along Contexts and Concerns (Depero Fortunato)

Models for their part have also been understood as views, on DB contents as well as systems’ architecture and components, the difference being on the focus put on engineering. Due to their association with phased processes, models has been relegated to a back-burner by agile approaches; yet it may resurface in terms of granularity with model-based engineering frameworks.

Yet, whatever the terminology (layers vs levels), what is at stake is the alignment of two basic scales:

  • Architectures: enterprise (concepts), systems (functionalities), and platforms (technologies).
  • Models: conceptual (business context and organization), analysis (symbolic representations), design (physical implementation).

Views & Architectures

As far as systems engineering is concerned, understandings of views usually refer to Philippe Kruchten’s “4+1” View Model of Software Architecture” :

  • Logical view: design of software artifacts.
  • Process view: captures the concurrency and synchronization aspects.
  • Physical view: describes the mapping(s) of software artifacts onto hardware.
  • Development view: describes the static organization of software artifacts in development environments.

A fifth is added for use cases describing the interactions between systems and business environments.

Whereas these views have been originally defined with regard to UML diagrams, they may stand on their own meanings and merits, and be assessed or amended as such.

Apart from labeling differences, there isn’t much to argue about use cases (for requirements), process (for operations), and physical (for deployment) views; each can be directly associated to well identified parts of systems engineering that are to be carried out independently of organizations, architectures or methods.

Logical and development views raise more questions because they imply a distinction between design and implementation. That implicit assumption induces two kinds of limitations:

  • They introduce a strong bias toward phased approaches, in contrast to agile development models that combine requirements, development and acceptance into iterations.
  • They classify development processes with regard to predefined activities, overlooking a more critical taxonomy based on objectives, architectures and life-cycles: user driven and short-term (applications ) vs data-based and long-term (business functions).

These flaws can be corrected if logical and development views are redefined respectively as functional and application views, the former targeting business objects and functions, the latter business logic and users’ interfaces.

Architecture based views
Architecture based views

That make views congruent with architecture levels and consequently with engineering workshops. More importantly, since workshops make possible the alignment of products with work units, they are a much better fit to model-based engineering and a shift from procedural to declarative paradigm.

Model-based Systems Engineering & Granularity

At least in theory, model-based systems engineering (MBSE) should free developers from one-fits-all procedural schemes and support iterative as well as declarative approaches. In practice that would require matching tasks with outcomes, which could be done if responsibilities on the former can be aligned with models granularity of the latter.

With coarse-grained phased schemes like MDA’s CIM/PIM/PSM (a), dependencies between tasks would have to be managed with regard to a significantly finer artifacts’ granularity.

Managing changes at architecture (a) or application (b) level.
Managing changes at architecture (a) or application (b) level.

For agile schemes, assuming conditions on shared ownership and continuous deliveries are met, projects would put locks on “models” at both ends (users’ stories and deliveries) of development cycles (b), with backlogs items defining engineering granularity.

Backlogs mechanism can be used to manage customized granularity and hierarchical dependencies across model layers

From the enterprise perspective it would be possible to unify the management of changes in architectures across layers and responsibilities: business concepts and organization, functional architecture, and systems capabilities:

EAGovern_EA
Functional architecture as symbolic bridge between business needs and system capabilities.

From the engineering perspective it would be possible to unify the management of changes in artifacts at the appropriate level of granularity: static and explicit using milestones (phased), dynamic and implicit using backlogs (agile).

Fine grained model based frameworks could support phased as well as agile development solutions

Such a declarative repository would greatly enhance exchanges and integration across projects  and help to align heterogeneous processes independently of the methodologies used.

Further Reading

External Links

Focus: MDA & UML

Preamble

UML (Unified Modeling Language) and MDA (Model Driven Architecture) epitomize the lack of focus and consistency of the OMG’s strategy. As it’s safe to assume that there can be no architectures without models, MDA and UML arguably bring sensible (if not perfect) schemes without significant competition.

MarcelBroodthaers-2Pipes
Unified language for Business and System Modeling (Marcel Broodthaers)

Unfortunately, not much has been made to play on their obvious complementarity and to exploit their synergies.

MDA & the Nature of Models

Model driven architecture (MDA) can be seen as the main (only ?) documented example of model based systems engineering. Its taxonomy organizes models within three layers:

  • Computation independent models (CIMs) describe organization and business processes independently of the role played by supporting systems.
  • Platform independent models (PIMs) describe the functionalities supported by systems independently of their implementation.
  • Platform specific models (PSMs) describe systems components depending on implementation platforms.

Engineering can then be managed along architecture layers (a), or carried out as a whole for each application (b).

mapsterrits_landingschar
Managing changes at architecture (a) or application (b) level.

It’s important to note that the MDA framework is completely neutral with regard to methods: engineering processes can be organized as phased activities (procedural), iterations (agile), or artifacts transformation (declarative).

Logic & The Matter of Models

Whatever the idiosyncrasies and fuzziness of business concerns and contexts, at the end of the day requirements will have to be coerced into the strict logic of computer systems. That may be a challenging task to be carried out directly, but less so if upheld by models.

As it happens, a fact all too often ignored, models come with sound logical foundations that can be used to formalize the mapping of requirements into specifications; schematically, models are to be set in two formal categories:

  • Descriptive (aka extensional) ones try to classify actual objects, events, and processes into categories.
  • Prescriptive (aka intensional) ones specify what is expected of systems components and how to develop them.
The logical basis of models
The logical basis of models

Interestingly, that distinction provides a formal justification to the one between analysis and design models, the former for the consolidation of requirements across business domains and enterprise organization, the latter for systems and software designs. Such logical foundations could help to manage the mapping of business processes and systems architectures.

UML & the Anatomy of Models

Except scientific computation, there is no reason to assume a-priori congruence between the description of business objects and processes and the specification of the software components. As a corollary, their respective structures and features are better to be dealt with separately.

But that’s not the case at architecture level, where domains and identities have to be managed continuously and consistency on the two sides of the business/system divide. At this level (aka enterprise architecture), responsibilities and identification and communication mechanisms must be defined uniformly.

Compared to MDA set at architecture level, UML describes the corresponding artifacts for business, systems, and platform layers. Regardless of the confusing terminology (layers or levels), that puts MDA and UML along orthogonal dimensions: the former (layers) deals with the nature of contents, the latter (levels) with their structures and features.

MDA is only concerned with architectures, UML describe the structure of architecture components.
MDA is only concerned with architectures, UML describe the structure of architecture components.

Using the same unified modeling language across business, systems, and platform layers is to clearly and directly enhance transparency and traceability; but the full extent of MDA/UML cross-benefits is to appear when models logic is taken into account.

Models & Systems Evolution

As illustrated by the increasing number of systemic crashes, systems obsolescence is no longer a matter of long-term planning but of operational continuity: change has become the rule and as far as complex and perennial systems are concerned, architectures are to evolve while supporting their functional duties seamlessly. If that is to be achieved, modularity and a degree of consistency are necessary between the nature of changes and their engineering. That’s where MDA is to help.

As pointed to above, modularity is best achieved with regard to level (architecture, element) and models contents (business, systems, platforms).

At architecture level, changes in domains, identification, and categories must be aligned between descriptive (enterprise) and prescriptive (systems) models. That will be best achieved with UML models across all MDA layers.

Using UML and MDA helps to align descriptive and prescriptive models at architecture level.
Using UML and MDA helps to align descriptive and prescriptive models at architecture level.

The constraints of continuity and consistency can be somewhat eased at element level: if descriptive (business) and prescriptive (systems) models of structures and features are to be consistent, they are not necessarily congruent. On component (prescriptive/design) side, UML and object-oriented design (OOD) are to keep them encapsulated. As for the business (descriptive/analysis) side, since structures and features can be modeled separately (and OOD not necessarily the best option), any language (UML, BPMN, DSL,etc.) can be used. In between, the structure (aka signature) of messages passed at architecture level is to be specified depending on communication framework.

Considering the new challenges brought about by the comprehensive interoperability of heterogeneous systems, the OMG should reassess the full range of latent possibilities to be found in its engineering portfolio.

Further Reading

Models as Parachutes

Preamble

The recent paralysis of British Airways world operations (due to a power failure, if officials are to be believed), following the crash of Delta Airlines’ reservation system and a number of similar incidents, once again points to the reliability of large and critical IT systems.

László Moholy-Nagy-para
Models as Parachutes (László Moholy-Nagy)

Particularly at risk are airlines or banking systems, whose seasoned infrastructures, at the cutting edge when introduced half a century ago, have been strained to their limit by waves of extensive networked new functionalities. Confronted to the magnitude and complexity of overall modernization, most enterprises have preferred piecemeal updates to architectural leaps. Such policies may bring some respite, but they may also turn into aggravating factors, increasing stakes and urgency as well as shortening odds.

Assuming some consensus about stakes, hazards, and options, the priority should be to overcome jumping fears by charting a reassuring perspective in continuity with current situation. For that purpose models may provide heartening parachutes.

Models: Intents & Doubts

Models can serve two kinds of purposes:

  • Describe business contexts according to enterprise objectives, foretell evolution, and simulate policies.
  • Prescribe the architecture of supporting systems and the design of software components.

Business analyst figure maps from territories, software architects create territories from maps
Models Purposes: Describe contexts & concerns, Design supporting systems

Frameworks were supposed to combine the two perspectives, providing a comprehensive and robust basis to systems governance. But if prescriptive models do play a significant role in engineering processes, in particular for code generation, they are seldom fed by their descriptive counterpart.

Broadly speaking, the noncommittal attitudes toward descriptive models comes from a rooted mistrust in non executable models: as far as business analysts and software engineers are concerned, such models can only serve as documentary evidence. And since prescriptive models are by nature grounded to systems’ inner making, there is no secure conceptual apparatus linking systemic changes with their technical consequences. Hence the jumping frights.

Overcoming those frights could be achieved by showing the benefits of secure and soft landings.

Models for Secure Landings

As any tools, models must be assessed with regard to their purpose: prescriptive ones with regard to feasibility and reliability of architectures and design, descriptive ones with regard to correctness and consistency. As already noted, compared to what has been achieved for the former, nothing much has been done about the validity of the latter.

Yet, and contrary to customary beliefs, the rigorous verification of descriptive (aka extensional) models is not a dead-end. Of course these models can never be proven true because there is no finite scope against which they could be checked; but it doesn’t mean that nothing can be done to improve their reliability:

Models must be assessed with regard to their purpose
How to Check for secure landings

  • Correctness: How to verify that all the relevant individuals and features are taken into account. That can only be achieved empirically by building models open to falsification.
  • Consistency: How to verify that the symbolic descriptions (categories and connectors) are complete, coherent and non redundant across models and abstraction levels. That can be formally verified.
  • Alignment: How to verify that current and required business processes are to be seamlessly and effectively supported by systems architectures. That can be managed by introducing a level of indirection, as illustrated by MDA with platform independent models (PIMs) set between computation independent (CIMs) and platform specific (PSMs) ones.

Once established on secure grounds, models can be used to ensure soft landings.

Models for Soft Landings

Set within model based system engineering frameworks, models will help to replace piecemeal applications updates by seamless architectures modernization:

  • Systems: using models shift the focus of change from hardware to software.
  • Enterprise: models help to factor out the role of organization and regulations.
  • Project management: models provide the necessary hinge between agile and phased projects, the former for business driven applications, the latter for architecture oriented ones. Combining both approaches will ensure than lean and just-in-time processes will not be sacrificed to system modernization.

Seamless architectures modernization (a) vs Piecemeal applications updates (b).
Seamless architectures modernization (a) vs Piecemeal applications updates (b).

More generally, and more importantly, models are the option of choice (if not the only one) for enterprise knowledge management:

  • Business: Computation independent models (CIMs), employed to trace, justify and rationalize business strategies and processes portfolios.
  • Systems: Platform specific models (PSMs), employed to trace, justify and rationalize technical alternatives and decisions.
  • Decision-making and learning: Platform independent models (PIMs), employed to align business and systems and support enterprise architecture governance.

And knowledge management is arguably the primary factor for successful comprehensive modernization.

Strategic Decision-making: Cash or Crash

Governance is all about risks and decision-making, but investing on truly fail-safe systems for airlines or air traffic control can be likened to a short bet on the Armageddon, and that cannot be easily framed in a neat cost-benefit analysis. But that may be the very nature of strategic decision-making: not amenable to ROI but aiming at risks assessment and the development of the policies apt to contain and manage them. That would be impossible without models.

Further Reading