Healthcare: Tracks & Stakes

Preamble

Healthcare represents at least a tenth of developed country’s GDP, with demography pushing to higher levels year after year. In principle technology could drive costs in both directions; in practice it has worked like a ratchet: upside, innovations are extending the scope of expensive treatments, downside, institutional and regulatory constraints have hamstrung the necessary mutations of organizations and processes.

Health Care Personal Assistant (Kerry James Marshall)

As a result, attempts to spread technology benefits across healthcare activities have dwindle or melt away, even when buttressed by major players like Google or Microsoft.

But built up pressures on budgets combined with social transformations have undermined bureaucratic barriers and incumbents’ estates, springing up initiatives from all corners: pharmaceutical giants, technology startups, healthcare providers, insurers, and of course major IT companies.

Yet the wide range of players’ fields and starting lines may be misleading, incumbents or newcomers are well aware of what the race is about: whatever the number of initial track lanes, they are to fade away after a few laps, spurring the front-runners to cover the whole track, alone or through partnerships. As a consequence, winning strategies would have to be supported by a comprehensive and coherent understanding of all healthcare aspects and issues, which can be best achieved with ontologies.

Ontologies vs Models

Ontologies are symbolic constructs (epitomized by conceptual graphs made of nodes and connectors) whose purpose is to make sense of a domain of discourse:

  1. Ontologies are made of categories of things, beings, or phenomena; as such they may range from simple catalogs to philosophical doctrines.
  2. Ontologies are driven by cognitive (i.e non empirical) purposes, namely the validity and consistency of symbolic representations.
  3. Ontologies are meant to be directed at specific domains of concerns, whatever they can be: politics, religion, business, astrology, etc.

That makes ontologies a special case of uncommitted models: like models they are set on contexts and concerns; but contrary to models ontologies’ concerns are detached from actual purposes. That is precisely what is expected from a healthcare conceptual framework.

Contexts & Business Domains

Healthcare issues are set across too many domains to be effectively fathomed, not to mention followed as they change. Notwithstanding, global players must anchor their strategies to different institutional contexts, and frame their policies as to make them transparent and attractive to others players. Such all-inclusive frameworks could be built from ontologies profiled with regard to the governance and stability of contexts:

  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to accord.
  • Corporate: Defined by enterprises, changes subject to internal decision-making.
  • Social: Defined by usage, volatile, continuous and informal changes.
  • Personal: Customary, defined by named individuals (e.g research paper).

Ontologies set along that taxonomy of contexts could then be refined as to target enterprise architecture layers: enterprise, systems, platforms, e.g:

A sample of Healthcare profiled ontologies

Depending on the scope and nature of partnerships, ontologies could be further detailed as to encompass architectures capabilities: Who, What, How, Where, When. 

Concerns & Architectures Capabilities

As pointed above, a key success factor for major players would be their ability to federate initiatives and undertakings of both incumbents and newcomers, within or without partnerships. That can be best achieved with enterprise architectures aligned with an all-inclusive yet open framework, and for that purpose the Zachman taxonomy would be the option of choice. The corresponding enterprise architecture capabilities (Who,What, How, Where, When) could then be uniformly applied to contexts and concerns:

  • Internally across architecture layers for enterprise (business and organization), systems (logical structures and functionalities), and platforms (technologies).
  • Externally across context-based ontologies as proposed above.

The nexus between environments (contexts) and enterprises (concerns) ontologies could then be organised according to the epistemic nature of items: terms, documents, symbolic representations (aka surrogates), or business objects and phenomena.

Mapping knowledge to architectures capabilities

That would outline four basic ontological archetypes that may or may not be combined:

  • Thesaurus: ontologies covering terms, concepts.
  • Document Management: thesaurus and documents.
  • Organization and Business: ontologies pertaining to enterprise organization and business processes.
  • Engineering: ontologies pertaining to the symbolic representation (aka surrogates) of organizations, businesses, and systems.

Global healthcare players could then build federating frameworks by combining domain and architecture driven ontologies, e.g:

Building federating frameworks with modular ontologies designed on purpose.

As a concluding remark, it must be reminded that the objective is to federate the activities and systems of healthcare players without interfering with the design of their business processes or supporting systems. Hence the importance of the distinction between ontologies and models introduced above which would act as a guaranty that concerns are not mixed up insofar as ontologies remain uncommitted models.

Further Reading

External Links

Ontologies as Productive Assets

Preamble

An often overlooked benefit of artificial intelligence has been a renewed interest in seminal philosophical and cognitive topics; ontologies coming top of the list.

The Thinker Monkey, Breviary of Mary of Savoy
The Thinker Monkey, Breviary of Mary of Savoy

Yet that interest has often been led astray by misguided perspectives, in particular:

  • Universality: one-fits-all approaches are pointless if not self-defeating considering that ontologies are meant to target specific domains of concerns.
  • Implementation: the focus is usually put on representation schemes (commonly known as Resource Description Frameworks, or RDFs), instead of the nature of targeted knowledge and the associated cognitive capabilities.

Those misconceptions, often combined, may explain the limited practical inroads of ontologies. Conversely, they also point to ontologies’ wherewithal for enterprises immersed into boundless and fluctuating knowledge-driven business environments.

Ontologies as Assets

Whatever the name of the matter (data, information or knowledge), there isn’t much argument about its primacy for business competitiveness; insofar as enterprises are concerned knowledge is recognized as a key asset, as valuable if not more than financial ones, and should be managed accordingly. Pushing the comparison still further, data would be likened to liquidity, information to fixed income investment, and knowledge to capital ventures. To summarize, assets whatever their nature lose value when left asleep and bear fruits when kept awake; that’s doubly the case for data and information:

  • Digitized business flows accelerates data obsolescence and makes it continuous.
  • Shifting and porous enterprises boundaries and markets segments call for constant updates and adjustments of enterprise information models.

But assessing the business value of knowledge has always been a matter of intuition rather than accounting, even when it can be patented; and most of knowledge shapes up well beyond regulatory reach. Nonetheless, knowledge is not manna from heaven but the outcome of information processing, so assessing the capabilities of such processes could help.

Admittedly, traditional modeling methods are too stringent for that purpose, and looser schemes are needed to accommodate the open range of business contexts and concerns; as already expounded, that’s precisely what ontologies are meant to do, e.g:

  • Systems modeling,  with a focus on integration, e.g Zachman Framework.
  • Classifications, with a focus on range, e.g Dewey Decimal System.
  • Conceptual models, with a focus on understanding, e.g legislation.
  • Knowledge management, with a focus on reasoning, e.g semantic web.

And ontologies can do more than bringing under a single roof the whole of enterprise knowledge representations: they can also be used to nurture and crossbreed symbolic assets and develop innovative ones.

Ontologies Benefits

Knowledge is best understood as information put to use; accounting rules may be disputed but there is no argument about the benefits of a canny combination of information, circumstances, and purpose. Nonetheless, assessing knowledge returns is hampered by the lack of traceability: if a part of knowledge is explicit and subject to symbolic representation, another is implicit and manifests itself only through actual behaviors. At philosophical level it’s the line drawn by Wittgenstein: “The limits of my language mean the limits of my world”;  at technical level it’s AI’s two-lanes approach: symbolic rule-based engines vs non symbolic neural networks; at corporate level implicit knowledge is seen as some unaccounted for aspect of intangible assets when not simply blended into corporate culture. With knowledge becoming a primary success factor, a more reasoned approach of its processing is clearly needed.

To begin with, symbolic knowledge can be plied by logic, which, quoting Wittgenstein again, “takes care of itself; all we have to do is to look and see how it does it.” That would be true on two conditions:

  • Domains are to be well circumscribed. 
  • A water-tight partition must be secured between the logic of representations and the semantics of domains.

That could be achieved with modular and specific ontologies built on a clear distinction between common representation syntax and specific domains semantics.

As for non-symbolic knowledge, its processing has for long been overshadowed by the preeminence of symbolic rule-based schemes, that is until neural networks got the edge and deep learning overturned the playground. In a few years’ time practically unlimited access to raw data and the exponential growth in computing power have opened the door to massive sources of unexplored knowledge which is paradoxically both directly relevant yet devoid of immediate meaning:

  • Relevance: mined raw data is supposed to reflect the geology and dynamics of targeted markets.
  • Meaning: the main value of that knowledge rests on its implicit nature; applying existing semantics would add little to existing knowledge.

Assuming that deep learning can transmute raw base metals into knowledge gold, enterprises would need to understand, assess, and improve the refining machinery. That could be done with ontological frames.

A Proof of Concept

Compared to tangible assets knowledge may appear as very elusive, yet, and contrary to intangible ones, knowledge is best understood as the outcome of processes that can be properly designed, assessed, and improved. And that can be achieved with profiled ontologies.

As a Proof of Concept, an ontological kernel has been developed along two principles:

  • A clear-cut distinction between truth-preserving representation and domain specific semantics.
  • Profiled ontologies designed according to the nature of contents (concepts, documents, or artifacts), layers (environment, enterprise, systems, platforms), and contexts (institutional, professional, corporate, social.

That provides for a seamless integration of information processing, from data mining to knowledge management and decision making:

  • Data is first captured through aspects.
  • Categories are used to process data into information on one hand, design production systems on the other hand.
  • Concepts serve as bridges to knowledgeable information.

CaKe_DataInfoKnow

A beta version is available for comments on the Stanford/Protégé portal with the link: Caminao Ontological Kernel (CaKe).

Further Reading

External Links

Open Ontologies: From Silos to Architectures

To be of any use for enterprises, ontologies have to embrace a wide range of contexts and concerns, often ill-defined for environments, rather well expounded for systems.

Circumscribed Contexts & Crossed Concerns (Robert Goben)

And now that enterprises have to compete in open, digitized, and networked environments, business and systems ontologies have to be combined into modular knowledge architectures.

Ontologies & Contexts

If open-ended business contexts and concerns are to be taken into account, the first step should be to characterize ontologies with regard to their source, justification, and the stability of their categories, e.g:

  • Institutional: Regulatory authority, steady, changes subject to established procedures.
  • Professional: Agreed upon between parties, steady, changes subject to accords.
  • Corporate: Defined by enterprises, changes subject to internal decision-making.
  • Social: Defined by usage, volatile, continuous and informal changes.
  • Personal: Customary, defined by named individuals (e.g research paper).

Assuming such an external taxonomy, the next step would be to see what kind of internal (i.e enterprise architecture) ontologies can be fitted into, as it’s the case for the Zachman framework.

The Zachman’s taxonomy is built on well established concepts (Who,What,How, Where, When) applied across architecture layers for enterprise (business and organization), systems (logical structures and functionalities), and platforms (technologies). These layers can be generalized and applied uniformly across external contexts, from well-defined (e.g regulations) to fuzzy (e.g business prospects or new technologies) ones, e.g:

Ontologies, capabilities (Who,What,How, Where, When), and architectures (enterprise, systems, platforms).

That “divide to conquer” strategy is to serve two purposes:

  • By bridging the gap between internal and external taxonomies it significantly enhances the transparency of governance and decision-making.
  • By applying the same motif (Who,What, How, Where, When) across the semantics of contexts, it opens the door to a seamless integration of all kinds of knowledge: enterprise, professional, institutional, scientific, etc.

As can be illustrated using Zachman concepts, the benefits are straightforward at enterprise architecture level (e.g procurement), due to the clarity of supporting ontologies; not so for external ones, which are by nature open and overlapping and often come with blurred semantics.

Ontologies & Concerns

A broad survey of RDF-based ontologies demonstrates how semantic overlaps and folds can be sort out using built-in differentiation between domains’ semantics on one hand, structure and processing of symbolic representations on the other hand. But such schemes are proprietary, and evidence shows their lines seldom tally, with dire consequences for interoperability: even without taking into account relationships and integrity constraints, weaving together ontologies from different sources is to be cumbersome, the costs substantial, and the outcome often reduced to a muddy maze of ambiguous semantics.

Knowledge graphs have tackled the difficulty by setting apart representation (e.g RDF) and contents semantics (aka ontologies), and their impressive performances across a wide range of domains bear witness of the soundness of the approach.

The governance-driven taxonomy introduced above deals with contexts and consequently with coarse-grained modularity. It should be complemented by a fine-grained one to be driven by concerns, more precisely by the epistemic nature of the individual instances to be denoted. As it happens, that could also tally with the Zachman’s taxonomy:

  • Thesaurus: ontologies covering terms and concepts.
  • Documents: ontologies covering documents with regard to topics.
  • Business: ontologies of relevant enterprise organization and business objects and activities.
  • Engineering: symbolic representation of organization and business objects and activities.
KM_OntosCapabs
Ontologies: Purposes & Targets

Enterprises could then pick and combine templates according to domains of concern and governance. Taking an on-line insurance business for example, enterprise knowledge architecture would have to include:

  • Medical thesaurus and consolidated regulations (Knowledge).
  • Principles and resources associated to the web-platform (Engineering).
  • Description of products (e.g vehicles) and services (e.g insurance plans) from partners (Business).

Such designs of ontologies according to the governance of contexts and the nature of concerns would significantly reduce blanket overlaps and improve the modularity and transparency of ontologies.

On a broader perspective, that policy will help to align knowledge management with EA governance by setting apart ontologies defined externally (e.g regulations), from the ones set through decision-making, strategic (e.g plate-form) or tactical (e.g partnerships).

Open Ontologies’ Benefits

Benefits from open and formatted ontologies built along an explicit distinction between the semantics of representation (aka ontology syntax) and the semantics of context can be directly identified for:

Modularity: the knowledge basis of enterprise architectures could be continuously tailored to changes in markets and corporate structures without impairing enterprise performances.

Integration: the design of ontologies with regard to the nature of targets and stability of categories could enable built-in alignment mechanisms between knowledge architectures and contexts.

Interoperability: limited overlaps and finer granularity are to greatly reduce frictions when ontologies bearing out business processes are to be combined or extended.

Reliability: formatted ontologies can be compared to typed programming languages with regard to transparency, internal consistency, and external validity.

Last but not least, such reasoned design of ontologies may open new perspectives for the collaboration between cognitive humans and pretending ones.

Further Reading

External Links